Maximal Ordinals Notations

Pete Manolios
 Northeastern

Formal Methods, Lecture 7
October 2008

Recall: Ordinal Notations

- An ordinal notation for ordinal α is an explicit, constructive injection from $A \subseteq \omega$ to α
. For example, polynomials and numbers give us ω
- Add ω and we get the ordinals up to ε_{0}

1. Add ε_{0} and we can go further

We can keep adding new symbols forever
What about a "maximal" notation system?
Kleene and others considered such questions

Gödel Numbering

Recall: an ordinal notation for ordinal α is an explicit, constructive injection from $A \subseteq \omega$ to α

- For example, consider the ordinals up to ε_{0} in ACL2
- Can use Gödel encodings to go from lists to ω
- Can Gödel number Turing Machines

II If e is the Gödel number of a Turing Machine then
\{e\} is the corresponding TM

- $\{e\}(x)$ is the result of running the TM on input x

K Key definition: a fundamental sequence for limit ordinal λ is an increasing ω-sequence of ordinals whose limit is λ

Constructive Ordinal Notation Systems

A constructive ordinal notation system (CONS) is a pair (L, f) s.t. $L \subseteq \omega$, f: $L \rightarrow O$, and K, P, S are programs s.t.:

If $\mathrm{f} . \mathrm{x}=0$, then $\mathrm{K} . \mathrm{x}=1$
If If. x is a successor ordinal, then K.x = 2

- If $\mathrm{f} . \mathrm{x}$ is a limit ordinal K. $\mathrm{x}=3$

IIf $f . x$ is $\alpha+1$, then P. x is a notation for α
IIf. x is a limit ordinal λ, then $S . x$ is the Gödel number of a program s.t. $\{\mathrm{S} . x\}(0),\{\mathrm{S} . \mathrm{x}\}(1),\{\mathrm{S.x} \mathrm{\}}(2), \ldots$ are notations for a fundamental sequence for λ

- Example: let 2^{i} denote the naturals and let $3 \cdot 2^{i}$ denote $\omega+i$. What are L, f? Define K, P, and S.
. Note, unique notations not required

Kleene's Ordinal Notation System

. We describe CONS (L, f) by describing the set $f^{1}(\alpha)$. L is the union of all non-empty sets $f^{1}(\alpha)$

- 0 is the unique notation for 0

1 2^{x} is a notation $\alpha+1$ iff x is a notation for α
3^{e} is a notation for limit ordinal λ iff $\{\mathrm{e}\} .0,\{\mathrm{e}\} .1,\{\mathrm{e}\} .2, \ldots$, are notations for a fundamental sequence for λ
What notations do $0,1,2,3,4,5, \ldots$ receive?

- $0,1,2,4,16,2^{16}, \ldots$. And, the notations are unique

1 What is a notation for ω ?

- Numbers of the form 3^{e}, where $\{e\}$ outputs an increasing subsequence of $0,1,2,4,16,2^{16}, \ldots$.
- For each such e, $2^{\wedge}\left(3^{e}\right)$ is a notation for $\omega+1$, and so on

Define K, P, and S

Kleene's Ordinal Notation System

. We describe CONS (L,f) by describing the set $f^{1}(\alpha)$. L is the union of all non-empty sets $f^{1}(\alpha)$

- 0 is the unique notation for 0
2^{x} is a notation $\alpha+1$ iff x is a notation for α
3^{e} is a notation for limit ordinal λ iff $\{\mathrm{e}\} .0,\{\mathrm{e}\} .1,\{\mathrm{e}\} .2, \ldots$, are notations for a fundamental sequence for λ
Is this a CONS? What are K, P, and S ?
- Theorem: for distinct ordinals α, β in the range off, $f^{1}(\alpha) \cap$ $f^{1}(\beta)=\varnothing$, so f really is a function
Theorem: The ordinals defined by any CONS form an initial segment of the ordinals upto a limit ordinal Maximality Theorem: If ($\left.L^{\prime}, f^{\prime}\right)$ is a CONS, then there is a program T such that $T\left(L^{\prime}\right) \subseteq L$ and $f(T . x)=f^{\prime}(x)$ for all x in L^{\prime}

Recursiveness

Let λ be the least ordinal not provided with a notation
λ has to be a limit ordinal

- Can't we extend Kleene's system by adding a notation for λ ?
- Say we use 5 to denote λ
- Then S .5 = e where $\{\mathrm{e}\}$ outputs a fundamental sequence for λ

1. But then 3^{e} is already a notation for λ

1 Question: how do we recognize if 3^{e} is a notation?
I Answer: this is an undecidable problem
. We can't even recognize if $\{e\}$ is total, let alone a fundamental sequence

- Contrast this with ordinal notations in ACL2

Recursive Ordinal Notation Systems

1. An ordinal is recursive if it is order-isomorphic to some woset $\langle\mathrm{W},<\rangle$ such that we can algorithmically determine for all a, b in W if $a<b$

- For example, show that ω^{2} is recursive
- The set of recursive ordinals is countable
. The least non-recursive ordinal is a limit ordinal
- Recursive ordinals are a constructive analog of Cantor's well ordering approach to ordinals
- The constructive ordinals are a constructive analog of Cantor's ordinal generation principles
ITheorem: the recursive ordinals are exactly the constructive ordinals

