Cardinals and Intro to Ordinals Notations

Pete Manolios Northeastern

Formal Methods, Lecture 5
September 2008

Last Time：Axiomatic Set Theory

1 Axiom 0．Set Existence：$\langle\exists \mathrm{x}:: \mathrm{x}=\mathrm{x}\rangle$
｜Axiom 1．Extensionality：〈 $\forall x, y::\langle\forall z ~:: z \in X \equiv z \in y\rangle \Rightarrow x=y\rangle$
－Axiom 3．Comprehension Scheme：For each formula φ without y free，the universal closure of the following is an axiom：
$\langle\exists y::\langle\forall x:: x \in y \equiv x \in z \wedge \varphi\rangle\rangle$
I Axiom 4．Pairing：$\langle\forall x, y::\langle\exists z:: x \in Z \wedge y \in z\rangle\rangle$
－Axiom 5．Union：〈 $\langle\mathrm{F}::$ 〈 $\exists \mathrm{A}::$ 〈 $\forall \mathrm{X}, \mathrm{Y}::(\mathrm{Y} \in \mathrm{F} \wedge \mathrm{x} \in \mathrm{Y}) \Rightarrow \mathrm{x} \in \mathrm{A}\rangle\rangle\rangle$
\｜Axiom 6．Replacement Scheme．For each formula φ without Y free，the universal closure of the following is an axiom：
$\langle\forall x \in \mathrm{~A}::\langle\exists!z:: \varphi(x, z)\rangle\rangle \Rightarrow\langle\exists Y::\langle\forall x \in \mathrm{~A}::\langle\exists z \in \mathrm{Y}:: \varphi(\mathrm{x}, \mathrm{z})\rangle\rangle\rangle$
I Axiom 7．Infinity：$\langle\exists x:: 0 \in x \wedge\langle\forall y \in x:: y+\in x\rangle\rangle(y+=y \cup\{y\})$
\｜Axiom 9．Choice．$\langle\forall \mathrm{A}::\langle\exists \mathrm{R}:: \mathrm{R}$ well－orders A$\rangle\rangle$

Hey, What About Axiom 2?

1. Axiom 2: Foundation. Sets are well-founded under \in

1 〈 $\quad \mathrm{x}::\langle\exists \mathrm{y} \in \mathrm{x}\rangle \Rightarrow\langle\exists \mathrm{y} \in \mathrm{x}::\urcorner\langle\exists \mathrm{z} \in \mathrm{x}:: \mathrm{z} \in \mathrm{y}\rangle\rangle\rangle$
I y is a minimal element above

- See handout for an alternate definition of foundation

I There are set theories where foundation is omitted
. So, we can have $x \in x$
The problem is: when are two sets equal?
What would you do?

Cardinals (\& Axiom 8)

- $|A|$ is the least ordinal α s.t. $\alpha \approx A$ (\approx means bijection)
- α is a cardinal iff $\alpha=|\alpha|$

1 A cardinal number is an ordinal number whose size is > any of its elements

1. A is finite iff $|A|<\omega$

- A is infinite iff it is not finite

1. A is countable iff $|A| \leq \omega$

I A is uncountable iff it is not countable

- We can't prove that uncountable sets exist

I Axiom 8. Power Set. $\langle\forall x::$ 〈 $\langle\exists \mathrm{y}::\langle\forall z \subseteq x:: z \in y\rangle\rangle\rangle$
$\wp(x)=\{z: z \subseteq x\}$

Properties of Cardinals

1. Theorem: $|\mathrm{x}|<|\wp(\mathrm{x})|$

- This allows us to obtain larger and larger cardinals
- Recall: a countable union of countable sets is countable

1. If $\left|X_{i}\right| \leq \omega$ for all $i<\omega$, then $\left|\mu_{i<\omega} X_{i}\right| \leq \omega$

If $\omega \leq \kappa$ and $\left|X_{i}\right| \leq \kappa$ for all $i<k$, then $\left|j_{i<k} X_{i}\right| \leq \kappa$

- $\mathrm{K}+$ is the least cardinal $>\mathrm{K}$ (overloaded notation!)
- Define ω_{a} (by transfinite recursion)
$\omega_{0}=\omega$
$\omega_{\alpha+1}=\left(\omega_{\alpha}\right)+$
$\omega_{\mathrm{y}}=\cup\left\{\omega_{\alpha}: \alpha<\gamma\right\} \quad$ (limit cardinal)
- Note $\omega_{1} \gg \varepsilon_{0}$

Extended Initial Sequence of Ordinals

- $0,1,2, \ldots, \omega$,
$\omega+1, \omega+2, \ldots, \omega+\omega=\omega \cdot 2, \omega \cdot 2+1, \ldots, \omega \cdot 3, \ldots$,
$\omega \cdot \omega=\omega^{2}, \ldots, \omega^{3}, \ldots, \omega^{\omega}, \ldots$,
$\varepsilon_{0}, \varepsilon_{1}, \varepsilon_{2}, \ldots, \varepsilon_{\omega}, \ldots, \varepsilon_{\varepsilon}, \ldots, \ldots, \ldots$, (big jumps)
I $\omega_{1}, \omega_{2}, \omega_{3}, \ldots, \omega_{\omega}, \ldots$, (huge jumps)
$\omega_{\varepsilon 0}, \ldots, \omega_{\sigma}=\sigma$
1 Wait, does such a thing as σ exist?
- Does $f(\alpha)=\omega_{a}$ have a fixpoint?

This question highlights why fundamental questions about termination are really questions about ordinals

Limits

Let λ be a limit ordinal and let $\left\langle\alpha_{\xi}: \xi<\lambda\right\rangle$ be an increasing sequence of ordinals. Then the sequence has a limit: $\lim \langle\alpha \xi: \xi<\lambda\rangle=u\left\{\alpha_{\xi}: \xi<\lambda\right\}$

- Let $\mathrm{f}: \lambda \rightarrow \lambda$, where α is a limit ordinal in λ. We say f is continuous at α iff $f(\alpha)=\cup\{f(\xi): \xi<\alpha\}$
I. A function $\mathrm{f}: ~ \lambda \rightarrow \lambda$ is normal iff it is order preserving and continuous at every limit ordinal in λ
- Let $\mathrm{f}: \mathrm{On} \rightarrow$ On be a normal function. For every a there is a fixed-point y of f such that $\mathrm{y} \geq \alpha$
$\omega_{0}, \omega_{1}, \omega_{2}, \omega_{3}, \ldots, \omega_{\omega}, \ldots, \omega_{\varepsilon 0}, \ldots$, has a fixed point $\omega_{\sigma}=\sigma$
- Are there ordinals λ so that the following holds?
I. Lef $\mathrm{f}: \lambda \rightarrow \lambda$ be a normal function. For everya $<\lambda$ there is a fixed-point y of f such that $\gamma \geq \alpha$

Cofinality

\| $\mathrm{X} \subseteq \mathrm{Y}$ is cofinal in Y iff for all y in Y there is x in X s.t. $\mathrm{y} \leq \mathrm{x}$
\|f: $\alpha \rightarrow \beta$ maps α to β cofinally iff ran(f) is cofinal in β

- The cofinality of $\beta, \operatorname{cf}(\beta)$, is the least α such that there is a map from α cofinally into β
. Note: $\operatorname{cf}(\beta) \leq \beta$; If β is a successor, $\operatorname{cf}(\beta)=1$
- β is regular iff β is a limit ordinal and $\operatorname{cf}(\beta)=\beta$

Lemma: If β is regular, β is a cardinal
ω, k^{+}are regular

- So: $|A|<\omega_{Y}$ and $\alpha \in A \Rightarrow \alpha<\omega_{Y}$ implies $\lim A<\omega_{Y}$
- So: ω_{1} is an ordinal that satisfies our previous question
- Are there regular limit cardinals (weakly inaccessibles)?

Veblen Hierarchy

. Consider $\varphi_{0}(\alpha)=\omega^{\alpha}$
Which gives rise to $1, \omega^{1}, \omega^{2}, \omega^{3}, \ldots, \omega^{\omega}, \ldots, \omega^{\varepsilon 0}$
Define $\varphi_{1}(\alpha)$ so that it enumerates the fixpoints of φ
Which gives rise to $\varepsilon_{0}, \varepsilon_{1}, \varepsilon_{2}, \ldots, \varepsilon_{\omega}, \ldots$

- $\varphi_{2}(\alpha)$ enumerates the fixpoints of φ, \ldots

1. $\varphi_{\mathrm{Y}+1}(\alpha)$ enumerates the fixpoints of φ
$\varphi_{\beta}(\alpha)$ enumerates common fixpoints of φ for $\gamma<\beta$
. $\varphi_{a}(\beta)<\varphi_{y}(\delta)$ iff
$\alpha=\gamma$ and $\beta<\delta$, or
$\alpha<\gamma$ and $\beta<\varphi_{V}(\delta)$, or

- $\alpha>\gamma$ and $\varphi_{a}(\beta)<\delta$

The Ordinal Γ_{0}

II enumerates ordinals s.t. $\varphi_{4}(0)=\alpha$

- Γ_{0} is the smallest such ordinal

■ Γ_{0} plays a key role in proof theory

Ordinal Notations

. An ordinal notation for ordinal α is an explicit, constructive bijection between ω and α
I It turns out that there are ordinal notations for the Veblen hierarchy of countable ordinals

- Project:
- Extend ACL2 with notations up to at least Γ_{0}
- Define ordinal arithmetic for these notations

What does ACL2 currently do?

- It only has ordinals up to ε_{0}

Cantor Normal Form

II Theorem (Cantor Normal Form)
For every ordinal $\alpha \in \varepsilon_{0}$, there are unique $\alpha_{1}>\alpha_{2}>\cdots>\alpha_{n}>0$, $p \in \omega$, and $x_{1}, \ldots, x_{n} \in \omega \backslash\{0\}$ such that:
a \quad > α_{1}
$\alpha=\omega^{\alpha 1} x_{1}+\cdots+\omega^{\alpha n} x_{n}+p$
11 This is the (finite) representation of ε_{0} in ACL2

- Lexicographic ordering can be embedded in ω^{ω}

I $\langle x, y, z\rangle$ becomes $\omega^{2} x+\omega y+z$

- ACL2 also includes algorithms for ordinal arithmetic on ordinal notations
- These algorithms are quite interesting
- ACL2 can also reason about the ordinals upto ε_{0}
- Try it out

