Cardinals and Intro to Ordinals Notations

Pete Manolios Northeastern

Formal Methods, Lecture 5

September 2008

Last Time: Axiomatic Set Theory

- Axiom 0. Set Existence: (3x :: x=x)
- Axiom 1. Extensionality: $\langle \forall x, y ::: \langle \forall z :: z \in x \equiv z \in y \rangle \Rightarrow x = y \rangle$
- Axiom 3. Comprehension Scheme: For each formula φ without y free, the universal closure of the following is an axiom: (∃y :: (∀x :: x∈y ≡ x∈z ∧ φ))
- Axiom 4. Pairing: $\langle \forall x, y :: \langle \exists z :: x \in z \land y \in z \rangle \rangle$
- Axiom 5. Union: $\langle \forall F :: \langle \exists A :: \langle \forall x, Y :: (Y \in F \land x \in Y) \Rightarrow x \in A \rangle \rangle$
- Axiom 6. Replacement Scheme. For each formula φ without Y free, the universal closure of the following is an axiom: $\langle \forall x \in A :: \langle \exists ! z :: \varphi(x,z) \rangle \rangle \Rightarrow \langle \exists Y :: \langle \forall x \in A :: \langle \exists z \in Y :: \varphi(x,z) \rangle \rangle$
- Axiom 7. Infinity: $\langle \exists x :: 0 \in x \land \langle \forall y \in x :: y + \in x \rangle \rangle$ (y+ = y $\cup \{y\}$)
- Axiom 9. Choice. (∀A :: (∃R :: R well-orders A))

Hey, What About Axiom 2?

- Axiom 2: Foundation. Sets are well-founded under ∈
- $\langle \forall x :: \langle \exists y \in x \rangle \Rightarrow \langle \exists y \in x :: \neg \langle \exists z \in x :: z \in y \rangle \rangle$
- y is a minimal element above
- See handout for an alternate definition of foundation
- There are set theories where foundation is omitted
- So, we can have $x \in x$
- The problem is: when are two sets equal?
- What would you do?

Cardinals (& Axiom 8)

- |A| is the least ordinal α s.t. $\alpha \approx A$ (\approx means bijection)
- α is a cardinal iff $\alpha = |\alpha|$
- A cardinal number is an ordinal number whose size is > any of its elements
- A is finite iff $|A| < \omega$
- A is infinite iff it is not finite
- A is countable iff $|A| \le \omega$
- A is uncountable iff it is not countable
- We can't prove that uncountable sets exist
- Axiom 8. Power Set. $\langle \forall x :: \langle \exists y :: \langle \forall z \subseteq x :: z \in y \rangle \rangle$

Properties of Cardinals

- Theorem: |x| < |℘(x)|</p>
- This allows us to obtain larger and larger cardinals
- Recall: a countable union of countable sets is countable
- If $|X_i| \le \omega$ for all $i < \omega$, then $|u_{i < \omega} X_i| \le \omega$
- If $\omega \le \kappa$ and $|X_i| \le \kappa$ for all $i < \kappa$, then $|u_{i < \kappa} X_i| \le \kappa$
- **κ**+ is the least cardinal >κ (overloaded notation!)
- **Define** ω_{α} (by transfinite recursion)
 - $\omega_0 = \omega$
 - $\omega_{\alpha+1} = (\omega_{\alpha}) +$
 - $\omega_{\gamma} = \cup \{ \omega_{\alpha} : \alpha < \gamma \}$ (limit cardinal)

(successor cardinal) (limit cardinal)

Note $\omega_1 >> \varepsilon_0$

Extended Initial Sequence of Ordinals

- ω+1, ω+2, ..., $ω+ω = ω\cdot 2$, $ω\cdot 2+1$, ..., $ω\cdot 3$, ...,
- $\omega \cdot \omega = \omega^2, ..., \omega^3, ..., \omega^{\omega}, ...,$
- **ε**₀, ε₁, ε₂, ..., ε_ω, ..., ε_{ε0}, ..., ..., (big jumps)
- $\omega_1, \omega_2, \omega_3, \dots, \omega_{\omega}, \dots,$ (huge jumps)
- $ω_{ε0}, ..., ω_{σ} = σ$
- Wait, does such a thing as σ exist?
- Does $f(\alpha) = \omega_{\alpha}$ have a fixpoint?
- This question highlights why fundamental questions about termination are really questions about ordinals

Limits

- Let λ be a limit ordinal and let $\langle \alpha_{\xi} : \xi < \lambda \rangle$ be an increasing sequence of ordinals. Then the sequence has a limit: lim $\langle \alpha_{\xi} : \xi < \lambda \rangle = \cup \{ \alpha_{\xi} : \xi < \lambda \}$
- Let f: $\lambda \rightarrow \lambda$, where α is a limit ordinal in λ . We say f is continuous at α iff f(α) = \cup {f(ξ) : $\xi < \alpha$ }
- A function f: $\lambda \rightarrow \lambda$ is normal iff it is order preserving and continuous at every limit ordinal in λ
- Let f: On \rightarrow On be a normal function. For every α there is a fixed-point γ of f such that $\gamma \ge \alpha$
- $\omega_0, \omega_1, \omega_2, \omega_3, \dots, \omega_{\omega}, \dots, \omega_{\epsilon 0}, \dots,$ has a fixed point $\omega_{\sigma} = \sigma$
- Are there ordinals λ so that the following holds?
- Lef f: $\lambda \rightarrow \lambda$ be a normal function. For every $\alpha < \lambda$ there is a fixed-point γ of f such that $\gamma \ge \alpha$

Cofinality

- X⊆Y is *cofinal* in Y iff for all y in Y there is x in X s.t. $y \le x$
- **f**: α → β maps α to β cofinally iff ran(f) is cofinal in β
- The cofinality of β, cf(β), is the least α such that there is a map from α cofinally into β
- Note: $cf(\beta) \le \beta$; If β is a successor, $cf(\beta) = 1$
- β is regular iff β is a limit ordinal and cf(β)= β
- Lemma: If β is regular, β is a cardinal
- ω , κ+ are regular
- So: $|A| < \omega_{\gamma}$ and $\alpha \in A \Rightarrow \alpha < \omega_{\gamma}$ implies $\lim A < \omega_{\gamma}$
- So: ω_1 is an ordinal that satisfies our previous question
- Are there regular limit cardinals (weakly inaccessibles)?

Veblen Hierarchy

Consider $\varphi_0(\alpha) = \omega^{\alpha}$

- Which gives rise to 1, ω^1 , ω^2 , ω^3 , ..., ω^{ω} , ..., $\omega^{\epsilon 0}$
- Define $\varphi_1(\alpha)$ so that it enumerates the fixpoints of φ
- Which gives rise to ε_0 , ε_1 , ε_2 , ..., ε_{ω} , ...
- $\varphi_2(\alpha)$ enumerates the fixpoints of φ , ...
- $\phi_{Y+1}(\alpha)$ enumerates the fixpoints of ϕ
- $φ_β(\alpha)$ enumerates common fixpoints of φ for γ < β
- $\varphi_{\alpha}(\beta) < \varphi_{\gamma}(\delta)$ iff
 - $\alpha = \gamma \text{ and } \beta < \delta, \text{ or }$
 - $\alpha < \gamma$ and $\beta < \phi_{\gamma}(\delta)$, or
 - $\alpha > \gamma \text{ and } \varphi_{\alpha}(\beta) < \delta$

The Ordinal Γ₀

- **Γ** enumerates ordinals s.t. $\varphi_{\alpha}(0) = \alpha$
- **Γ**₀ is the smallest such ordinal
- **Γ**₀ plays a key role in proof theory

Ordinal Notations

- An ordinal notation for ordinal α is an explicit, constructive bijection between ω and α
- It turns out that there are ordinal notations for the Veblen hierarchy of countable ordinals
- Project:
 - Extend ACL2 with notations up to at least Γ₀
 - Define ordinal arithmetic for these notations
- What does ACL2 currently do?
- It only has ordinals up to ε_0

Cantor Normal Form

Theorem (Cantor Normal Form) For every ordinal $\alpha \in \varepsilon_0$, there are unique $\alpha_1 > \alpha_2 > \cdots > \alpha_n > 0$, $p \in \omega$, and $x_1, ..., x_n \in \omega \setminus \{0\}$ such that: $\alpha > \alpha_1$ $= \alpha = \omega^{\alpha 1} x_1 + \cdots + \omega^{\alpha n} x_n + p$ **This is the (finite) representation of \varepsilon_0 in ACL2** Lexicographic ordering can be embedded in ω^{ω} $\langle x,y,z \rangle$ becomes $\omega^2 x + \omega y + z$ ACL2 also includes algorithms for ordinal arithmetic on ordinal notations These algorithms are quite interesting ACL2 can also reason about the ordinals upto ε_0 Try it out