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Axiomatic Set Theory
From Kunen’s Set Theory book
Axiom 0. Set Existence: ⟨∃x :: x=x⟩
Axiom 1. Extensionality: ⟨∀x,y::⟨∀z :: z∈x ≡ z∈y⟩ ⇒ x=y⟩

What about an axiom that allows {x : P(x)}?
What would that mean? 
⟨∃y :: ⟨∀x :: x∈y ≡ P(x)⟩⟩
But, this is problematic
Why?
Russell’s paradox: Let  P(x) be x∉x
Idea: restrict the sets we can define in this way so that 
they are subsets of existing sets
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Comprehension
Axiom 3. Comprehension Scheme: For each formula φ without 
y free, the universal closure of the following is an axiom:       
⟨∃y :: ⟨∀x :: x∈y ≡ x∈z ∧ φ⟩⟩

We write this { x∈z : φ }
Note: this scheme yields an infinite number of axioms
Why is y not free in φ?
Consider ⟨∃y :: ⟨∀x :: x∈y ≡ (x∈z ∧ x∉y)⟩⟩
Definition: 0 is the unique set y s.t. ⟨∀x :: x∉y⟩

Why is this a definition?
Comprehension: { x∈z : x≠x }

By Axiom 0, some set z exists, so an empty set exists
Extensionality yields uniqueness 
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Pairing

We just showed 0 exists.
From Axioms 0,1, and 3 can we prove other sets exist?
No. Domain = {0}, ∈ ={} is a model of axioms 0, 1, and 3
We can’t even refute ⟨∀x :: x=0⟩

Axioms 4-8 posit the existence of sets 
Axiom 4. Pairing: ⟨∀x,y :: ⟨∃z :: x∈z ∧ y ∈z⟩⟩

Can define {x, y} by Pairing, Comprehension, Extensionality
What about ordered sets?
⟨x,y⟩ = {{x}, {x, y}}
How would you prove that this is a reasonable definition?
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Union

We also want to write A = ⋃F (every member of F is a ⊆ A)
Axiom 5. Union: ⟨∀F :: ⟨∃A :: ⟨∀x,Y :: (Y∈F ∧ x∈Y) ⇒ x∈A⟩⟩⟩

So ⋃F = {x : ⟨∃Y∈F :: x∈Y⟩} is well defined
Why can’t we define ⋃F with comprehension?
How would you define ∩F?
Define A⋃B = ⋃{A,B}, A∩B = ∩{A,B}, A\B = {x∈A : x∉B}

6



Replacement

Axiom 6. Replacement Scheme. For each formula φ without Y 
free, the universal closure of the following is an axiom:       
⟨∀x∈A :: ⟨∃!z:: φ(x,z)⟩⟩ ⇒ ⟨∃Y:: ⟨∀x∈A :: ⟨∃z∈Y :: φ(x,z)⟩⟩⟩

Infinite collection of axioms: one for each φ
Can define A × B. How?
We can define relations and functions as in the handout
Relations are sets whose elements are ordered pairs
A woset is a pair ⟨X, ≺⟩: ≺ is a well-founded relation on X 
that is transitive, irreflexive, and for which trichotomy holds
Axiom 9. Choice. ⟨∀A :: ⟨∃R :: R well-orders A⟩⟩

There are many equivalent formulations of 9

7



What are the Ordinals?

Let ⟨X, ≺⟩ be a woset
Define Xa = {x ∈ X | x ≺ a}

An ordinal is a woset ⟨X, ≺⟩, such that ⟨∀a ∈ X :: a = Xa⟩
Theorem: if ⟨X, ≺⟩ is an ordinal, then ≺ is ∈ (is ⊂)
Theorem: every woset is order-isomorphic to a unique ordinal
Def: Ord(X, ≺) is the ordinal corresponding to woset ⟨X, ≺⟩

Existence of infinite ordinals does not follow, yet
Axiom 7. Infinity: ⟨∃x:: 0∈x ∧ ⟨∀y∈x :: y+ ∈ x⟩⟩  (y+ = y ⋃ {y})
ω is set set of naturals
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Transfinite Induction

ON is the class of ordinals 
0, 1, 2, ..., ω, ω+1, ω+2, ..., ω+ω = ω·2, ω·2+1, ..., 
ω·3, ..., ω·ω = ω2, ..., ω3,..., ωω, ..., = ε0, ...
Three types of ordinals: 0, successor, limit
Transfinite induction on ON

If C ⊆ ON and C ≠ 0 then C has a least element
This is really a theorem schema
Proof: 

Fix α∈C
If α is not the least element of C, let β be the least 
element of α∩C 
Then β is the least element of C
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Transfinite Recursion

Transfinite recursions on ON
If F: V ➝ V, then there is a unique G: ON ➝ V such that  
G.a = F(G|a)
We can define recursive (class) functions if they only 
depend on smaller values
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Ordinal Addition
α+β = Ord(A, <A), where 

A = ({0} × α) ∪ ({1} × β) 
<A is the lexicographic ordering on A

Examples
1+ω ≈ ⟨0,0⟩,⟨1,0⟩,⟨1,1⟩,⟨1,2⟩, ... ≈ ω 
ω+1 ≈ ⟨0,0⟩,⟨0,1⟩,⟨0,2⟩,..., ⟨1,0⟩ ≈ ω+1

Properties of addition:
(α+β)+γ = α+(β+γ)            (associativity)
(β ≺ γ) ⇒ α+β ≺ α+γ         (strict right monotonicity)
(β ≺ γ) ⇒ β+α ≼ γ+α         (weak left monotonicity)
α ≺ ωβ ⇒ α + ωβ = ωβ       (additive principal property)
α, β ≺ ωγ ⇒ α + β ≺ ωγ      (closure of additive principal ordinals) 
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Ordinal Multiplication
α·β = Ord(A,<A), where 
A = β × α 
<A is the lexicographic ordering on A

Examples
2·ω ≈ ⟨0,0⟩,⟨0,1⟩,⟨1,0⟩,⟨1,1⟩,⟨2,0⟩,⟨2,1⟩, ...     ≈ ω
ω·2 ≈ ⟨0,0⟩,⟨0,1⟩,⟨0,2⟩,...,⟨1,0⟩,⟨1,1⟩,⟨1,2⟩ ...  ≈ ω·2

Properties of multiplication:
(α·β)·γ = α·(β·γ)              (associativity)
α·0 = 0, α·1 = α
α(β+γ) = α·β + α·γ           (left distributivity (but not right))
(0<α ∧ β<γ) ⇒ β·α < γ·α (strict right monotonicity)
β<γ ⇒ β·α ≤ γ·α              (weak left monotonicity)
If β is a limit, α·β = ∪{α·γ : γ<β}
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Ordinal Exponentiation

α0 =1, αβ+1 = αβ·α, and for limit ordinals, αβ = ∪γ≺β  αγ 

Examples

2ω = ∪n≺ω  2n = ω
2ω+1 = 2ω·2 = ω·2 (not 2ω+1 = 2·2ω = 2·ω = ω) 

Properties of exponentiation:
αβ+γ = αβ · αγ 
(αβ)γ = α (β·γ)

α ≺ ωβ ⇒ α + ωβ = ωβ       (additive principal property)
α, β ≺ ωγ ⇒ α + β ≺ ωγ      (closure of additive principal ordinals) 
(1<α ∧ β<γ) ⇒ αβ < αγ      (strict right monotonicity)
β<γ ⇒ βα ≤ γα                   (weak left monotonicity)
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