Set Theory & Ordinals

Pete Manolios Northeastern

Formal Methods, Lecture 4

September 2008

Standard Model of Set Theory

Axiomatic Set Theory

- From Kunen's Set Theory book
- Axiom 0. Set Existence: (3x :: x=x)
- Axiom 1. Extensionality: $\langle \forall x, y ::: \langle \forall z :: z \in x \equiv z \in y \rangle \Rightarrow x = y \rangle$
- What about an axiom that allows {x : P(x)}?
- What would that mean?
- $\langle \exists y :: \langle \forall x :: x \in y \equiv \mathsf{P}(x) \rangle \rangle$
- But, this is problematic
- Why?
- Russell's paradox: Let P(x) be $x \notin x$
- Idea: restrict the sets we can define in this way so that they are subsets of existing sets

Comprehension

- Axiom 3. Comprehension Scheme: For each formula φ without y free, the universal closure of the following is an axiom: ⟨∃y :: ⟨∀x :: x∈y ≡ x∈z ∧ φ⟩⟩
- We write this { $x \in z : \phi$ }
- Note: this scheme yields an *infinite* number of axioms
- Why is y not free in φ?
- Consider $\langle \exists y :: \langle \forall x :: x \in y \equiv (x \in z \land x \notin y) \rangle \rangle$
- **Definition:** 0 is the unique set y s.t. $\langle \forall x :: x \notin y \rangle$
- Why is this a definition?
- Comprehension: { $x \in z : x \neq x$ }
 - By Axiom 0, some set z exists, so an empty set exists
 - Extensionality yields uniqueness

Pairing

- We just showed 0 exists.
- From Axioms 0,1, and 3 can we prove other sets exist?
- No. Domain = $\{0\}, \in =\{\}$ is a model of axioms 0, 1, and 3
- We can't even refute $\langle \forall x :: x=0 \rangle$
- Axioms 4-8 posit the existence of sets
- Axiom 4. Pairing: $\langle \forall x, y :: \langle \exists z :: x \in z \land y \in z \rangle \rangle$
- Can define {x, y} by Pairing, Comprehension, Extensionality
- What about ordered sets?
- $\langle \mathbf{x}, \mathbf{y} \rangle = \{\{\mathbf{x}\}, \{\mathbf{x}, \mathbf{y}\}\}$
- How would you prove that this is a reasonable definition?

Union

- We also want to write $A = \cup F$ (every member of F is $a \subseteq A$)
- Axiom 5. Union: $\langle \forall F :: \langle \exists A :: \langle \forall x, Y :: (Y \in F \land x \in Y) \Rightarrow x \in A \rangle \rangle$
- So ∪F = {x : ⟨∃Y∈F :: x∈Y⟩} is well defined
- Why can't we define UF with comprehension?
- How would you define ∩F?
- **Define** $A \cup B = \cup \{A, B\}, A \cap B = \cap \{A, B\}, A \setminus B = \{x \in A : x \notin B\}$

Replacement

- Axiom 6. Replacement Scheme. For each formula φ without Y free, the universal closure of the following is an axiom: ⟨∀x∈A :: ⟨∃!z:: φ(x,z)⟩⟩ ⇒ ⟨∃Y:: ⟨∀x∈A :: ⟨∃z∈Y :: φ(x,z)⟩⟩⟩
- Infinite collection of axioms: one for each φ
- Can define A × B. How?
- We can define relations and functions as in the handout
- Relations are sets whose elements are ordered pairs
- A woset is a pair $\langle X, \langle \rangle$: < is a well-founded relation on X that is transitive, irreflexive, and for which trichotomy holds
- Axiom 9. Choice. (∀A :: (∃R :: R well-orders A))
- There are many equivalent formulations of 9

What are the Ordinals?

- Let $\langle X, \langle \rangle$ be a woset
- Define $X_a = \{x \in X \mid x < a\}$
- An ordinal is a woset $\langle X, \langle \rangle$, such that $\langle \forall a \in X :: a = X_a \rangle$
- Theorem: if $\langle X, \langle \rangle$ is an ordinal, then $\langle is \in (is \subset)$
- Theorem: every woset is order-isomorphic to a unique ordinal
- Def: Ord(X, <) is the ordinal corresponding to woset $\langle X$, <>
- Existence of infinite ordinals does not follow, yet
- Axiom 7. Infinity: $\langle \exists x :: 0 \in x \land \langle \forall y \in x :: y + \in x \rangle \rangle$ (y+ = y $\cup \{y\}$)
- ω is set set of naturals

Transfinite Induction

- ON is the *class* of ordinals
- **1** 0, 1, 2, ..., ω , ω +1, ω +2, ..., ω + ω = ω ·2, ω ·2+1, ..., ω ·3, ..., ω · ω = ω ², ..., ω ³,..., ω^{ω} , ..., = ϵ_0 , ...
- Three types of ordinals: 0, successor, limit
- Transfinite induction on ON
 - If $C \subseteq ON$ and $C \neq 0$ then C has a least element
 - This is really a theorem schema
 - Proof:
 - Fix α∈C
 - If α is not the least element of C, let β be the least element of $\alpha \cap C$
 - Then β is the least element of C

Transfinite Recursion

Transfinite recursions on ON

- If F: V → V, then there is a unique G: ON → V such that G.a = F(G|a)
- We can define recursive (class) functions if they only depend on smaller values

Ordinal Addition

- $\alpha + \beta = Ord(A, <_A)$, where
 - $A = (\{0\} \times \alpha) \cup (\{1\} \times \beta)$
 - $<_A$ is the lexicographic ordering on A

Examples

 $1+\omega \approx \langle 0,0\rangle, \langle 1,0\rangle, \langle 1,1\rangle, \langle 1,2\rangle, \dots \approx \omega$

 $\omega + 1 \approx \langle 0, 0 \rangle, \langle 0, 1 \rangle, \langle 0, 2 \rangle, \dots, \langle 1, 0 \rangle \approx \omega + 1$

Properties of addition:

 $(\alpha + \beta) + \gamma = \alpha + (\beta + \gamma)$

$$(\beta < \gamma) \Rightarrow \alpha + \beta < \alpha + \gamma$$

$$(\beta < \gamma) \Rightarrow \beta + \alpha \leqslant \gamma + \alpha$$

$$\alpha < \omega^{\beta} \Rightarrow \alpha + \omega^{\beta} = \omega^{\beta}$$

(associativity) (strict right monotonicity) (weak left monotonicity) (additive principal property) $\alpha, \beta < \omega^{\gamma} \Rightarrow \alpha + \beta < \omega^{\gamma}$ (closure of additive principal ordinals)

Ordinal Multiplication

- $\alpha \cdot \beta = Ord(A, <_A)$, where
 - $A = \beta \times \alpha$
 - $<_A$ is the lexicographic ordering on A
- Examples
 - $2 \cdot \omega \approx \langle 0, 0 \rangle, \langle 0, 1 \rangle, \langle 1, 0 \rangle, \langle 1, 1 \rangle, \langle 2, 0 \rangle, \langle 2, 1 \rangle, \dots \approx \omega$
 - $\omega \cdot 2 \approx \langle 0, 0 \rangle, \langle 0, 1 \rangle, \langle 0, 2 \rangle, \dots, \langle 1, 0 \rangle, \langle 1, 1 \rangle, \langle 1, 2 \rangle \dots \approx \omega \cdot 2$
- Properties of multiplication:
 - (α · β) · γ = α · (β · γ) (associativity)
 - $\alpha \cdot 0 = 0, \alpha \cdot 1 = \alpha$

 - $(0 < \alpha \land \beta < \gamma) \Rightarrow \beta \cdot \alpha < \gamma \cdot \alpha \text{ (strict right monotonicity)}$
 - β < γ ⇒ β · α ≤ γ · α (weak left monotonicity)
 - If β is a limit, $\alpha \beta = \bigcup \{ \alpha \cdot \gamma : \gamma < \beta \}$

Ordinal Exponentiation

 $\alpha^{0} = 1$, $\alpha^{\beta+1} = \alpha^{\beta} \cdot \alpha$, and for limit ordinals, $d^{\beta} = \bigcup_{\gamma < \beta} \alpha^{\gamma}$ Examples $2^{\omega} = \bigcup_{n < \omega} 2^n = \omega$ $2^{\omega+1} = 2^{\omega} \cdot 2 = \omega \cdot 2 \text{ (not } 2^{\omega+1} = 2 \cdot 2^{\omega} = 2 \cdot \omega = \omega)$ Properties of exponentiation: $\alpha^{\beta+\gamma} = \alpha^{\beta} \cdot \alpha^{\gamma}$ $(\alpha^{\beta})^{\gamma} = \alpha^{(\beta \cdot \gamma)}$ $\dot{\alpha} < \omega^{\beta} \Rightarrow \alpha + \omega^{\beta} = \omega^{\beta}$ (additive principal property) α , $\beta < \omega^{\gamma} \Rightarrow \alpha + \beta < \omega^{\gamma}$ (closure of additive principal ordinals) ($1 < \alpha \land \beta < \gamma$) $\Rightarrow \alpha^{\beta} < \alpha^{\gamma}$ (strict right monotonicity) $\beta < \gamma \Rightarrow \beta^{\alpha} \le \gamma^{\alpha}$ (weak left monotonicity)