Set Theory \& Ordinals

Pete Manolios
 Northeastern

Formal Methods, Lecture 4
September 2008

Standard Model of Set Theory

Axiomatic Set Theory

1．From Kunen＇s Set Theory book
（1 Axiom 0．Set Existence：$\langle\exists x:: x=x\rangle$
－Axiom 1．Extensionality：$\langle\forall x, y::\langle\forall z:: z \in x \equiv z \in y\rangle \Rightarrow x=y\rangle$
－What about an axiom that allows $\{x: P(x)\}$ ？
What would that mean？
11 〈ヨy ：：〈 $\left.\left.{ }^{\prime} \mathrm{x}:: \mathrm{x} \in \mathrm{y} \equiv \mathrm{P}(\mathrm{x})\right\rangle\right\rangle$
－But，this is problematic
Why？
－Russell＇s paradox：Let $P(x)$ be $x \notin x$
I Idea：restrict the sets we can define in this way so that they are subsets of existing sets

Comprehension

1．Axiom 3．Comprehension Scheme：For each formula φ without y free，the universal closure of the following is an axiom：
$\langle\exists y::\langle\forall x:: x \in y \equiv x \in Z \wedge \varphi\rangle\rangle$
\｜We write this $\{x \in Z: \varphi\}$
Note：this scheme yields an infinite number of axioms
1．Why is y not free in φ ？
I Consider 〈ヨy ：：〈 $\forall x:: \quad x \in y \equiv(x \in z \wedge x \notin y)\rangle\rangle$
\｜Definition： 0 is the unique set y s．t．$\langle\forall x:: x \notin y\rangle$
Why is this a definition？
．Comprehension：$\{x \in Z: x \neq x\}$
－By Axiom 0，some set z exists，so an empty set exists
．Extensionality yields uniqueness

Pairing

We just showed 0 exists.
From Axioms 0,1 , and 3 can we prove other sets exist?

1) No. Domain $=\{0\}, \in=\{ \}$ is a model of axioms 0,1 , and 3

- We can't even refute $\langle\forall x:: x=0\rangle$
- Axioms 4-8 posit the existence of sets

1 Axiom 4. Pairing: $\langle\forall x, y::\langle\exists z:: x \in Z \wedge y \in z\rangle\rangle$

- Can define $\{x, y\}$ by Pairing, Comprehension, Extensionality

What about ordered sets?

- $\langle x, y\rangle=\{\{x\},\{x, y\}\}$

How would you prove that this is a reasonable definition?

Union

1. We also want to write $A=\cup F$ (every member of F is $a \subseteq A$)

Axiom 5. Union: $\langle\forall F::\langle\exists A::\langle\forall x, Y::(Y \in F \wedge x \in Y) \Rightarrow x \in A\rangle\rangle\rangle$

1. So $u F=\{x:\langle\exists Y \in F:: x \in Y\rangle\}$ is well defined

Why can't we define UF with comprehension?
1 How would you define $\cap F$?
Define $A \cup B=\cup\{A, B\}, A \cap B=\cap\{A, B\}, A \backslash B=\{x \in A: x \notin B\}$

Replacement

I Axiom 6．Replacement Scheme．For each formula φ without Y free，the universal closure of the following is an axiom： $\langle\forall x \in A::\langle\exists!z:: \varphi(x, z)\rangle\rangle \Rightarrow\langle\exists Y::\langle\forall x \in \mathrm{~A}::\langle\exists z \in \mathrm{Y}:: \varphi(\mathrm{x}, \mathrm{z})\rangle\rangle\rangle$

Infinite collection of axioms：one for each φ
1 Can define $\mathrm{A} \times \mathrm{B}$ ．How？
1．We can define relations and functions as in the handout
1．Relations are sets whose elements are ordered pairs
1．A woset is a pair $\langle X,<\rangle$ ：＜is a well－founded relation on X that is transitive，irreflexive，and for which trichotomy holds
－Axiom 9．Choice．〈 $\forall \mathrm{A}::$ 〈ヨR ：：R well－orders A〉〉
－There are many equivalent formulations of 9

What are the Ordinals?

1. Let $\langle X,<\rangle$ be a woset
2. Define $X_{a}=\{x \in X \mid x<a\}$

- An ordinal is a woset $\left\langle X,\langle \rangle\right.$, such that $\left\langle\forall a \in X:: a=X_{a}\right\rangle$
|. Theorem: if $\langle X,<\rangle$ is an ordinal, then $<$ is \in (is c)

1. Theorem: every woset is order-isomorphic to a unique ordinal
| Def: $\operatorname{Ord}(X,<)$ is the ordinal corresponding to woset $\langle X,<\rangle$

- Existence of infinite ordinals does not follow, yet

1. Axiom 7. Infinity: $\langle\exists x:: 0 \in x \wedge\langle\forall y \in x:: y+\in x\rangle\rangle(y+=y \cup\{y\})$
ω is set set of naturals

Transfinite Induction

- ON is the class of ordinals
- $0,1,2, \ldots, \omega, \omega+1, \omega+2, \ldots, \omega+\omega=\omega \cdot 2, \omega \cdot 2+1, \ldots$,
$\omega \cdot 3, \ldots, \omega \cdot \omega=\omega^{2}, \ldots, \omega^{3}, \ldots, \omega^{\omega}, \ldots,=\varepsilon_{0}, \ldots$
- Three types of ordinals: 0 , successor, limit

1. Transfinite induction on ON

If $C \subseteq O N$ and $C \neq 0$ then C has a least element
This is really a theorem schema
Proof:
Fix $\alpha \in C$
If α is not the least element of C, let β be the least element of $\alpha \cap C$

1. Then β is the least element of C

Transfinite Recursion

- Transfinite recursions on ON

If $\mathrm{F}: \mathrm{V} \rightarrow \mathrm{V}$, then there is a unique $\mathrm{G}: \mathrm{ON} \rightarrow \mathrm{V}$ such that G.a $=\mathrm{F}(\mathrm{G} \mid \mathrm{a})$

We can define recursive (class) functions if they only depend on smaller values

Ordinal Addition

$\alpha+\beta=\operatorname{Ord}(A,<A)$, where

- $A=(\{0\} \times \alpha) \cup(\{1\} \times \beta)$
! $<_{A}$ is the lexicographic ordering on A
- Examples
- $1+\omega \approx\langle 0,0\rangle,\langle 1,0\rangle,\langle 1,1\rangle,\langle 1,2\rangle, \ldots \approx \omega$
$\omega+1 \approx\langle 0,0\rangle,\langle 0,1\rangle,\langle 0,2\rangle, \ldots,\langle 1,0\rangle \approx \omega+1$

1. Properties of addition:

- $(\alpha+\beta)+\gamma=\alpha+(\beta+\gamma)$
- $(\beta<\gamma) \Rightarrow \alpha+\beta<\alpha+\gamma$

1. $(\beta<\gamma) \Rightarrow \beta+\alpha \leqslant \gamma+\alpha$

- $\alpha<\omega^{\beta} \Rightarrow \alpha+\omega^{\beta}=\omega^{\beta}$
$\alpha, \beta<\omega^{\vee} \Rightarrow \alpha+\beta<\omega^{\curlyvee}$
(associativity)
(strict right monotonicity)
(weak left monotonicity)
(additive principal property)
(closure of additive principal ordinals)

Ordinal Multiplication

$\alpha \cdot \beta=\operatorname{Ord}\left(A,<_{A}\right)$, where

- $A=\beta \times \alpha$

॥ $<_{A}$ is the lexicographic ordering on A

- Examples
- $2 \cdot \omega \approx\langle 0,0\rangle,\langle 0,1\rangle,\langle 1,0\rangle,\langle 1,1\rangle,\langle 2,0\rangle,\langle 2,1\rangle, \ldots \approx \omega$
$\| \omega \cdot 2 \approx\langle 0,0\rangle,\langle 0,1\rangle,\langle 0,2\rangle, \ldots,\langle 1,0\rangle,\langle 1,1\rangle,\langle 1,2\rangle \ldots \approx \omega \cdot 2$
- Properties of multiplication:
${ }^{1}(\alpha \cdot \beta) \cdot \gamma=\alpha \cdot(\beta \cdot \gamma)$
(associativity)
$\alpha \cdot 0=0, \alpha \cdot 1=\alpha$
- $\alpha(\beta+\gamma)=\alpha \cdot \beta+\alpha \cdot \gamma \quad$ (left distributivity (but not right))
- $(0<\alpha \wedge \beta<\gamma) \Rightarrow \beta \cdot \alpha<\gamma \cdot \alpha$ (strict right monotonicity)
- $\beta<\gamma \Rightarrow \beta \cdot \alpha \leq \gamma \cdot \alpha \quad$ (weak left monotonicity)
- If β is a limit, $\alpha \cdot \beta=u\{\alpha \cdot \gamma: \gamma<\beta\}$

Ordinal Exponentiation

$\alpha^{0}=1, \alpha^{\beta+1}=\alpha^{\beta} \cdot \alpha$, and for limit ordinals, $\alpha^{\beta}=\bigcup_{y<\beta} \alpha^{\vee}$

- Examples

$$
\begin{aligned}
& 2^{\omega}=U_{n<\omega} 2^{n}=\omega \\
& 2^{\omega+1}=2^{\omega} \cdot 2=\omega \cdot 2\left(\operatorname{not} 2^{\omega+1}=2 \cdot 2^{\omega}=2 \cdot \omega=\omega\right)
\end{aligned}
$$

1. Properties of exponentiation:

1 $\alpha^{\beta+\gamma}=\alpha^{\beta} \cdot \alpha^{\gamma}$
11 $\left(\alpha^{\beta}\right)^{\gamma}=\alpha^{(\beta \cdot \gamma)}$

- $\alpha<\omega^{\beta} \Rightarrow \alpha+\omega^{\beta}=\omega^{\beta} \quad$ (additive principal property)
- $\alpha, \beta<\omega^{\gamma} \Rightarrow \alpha+\beta<\omega^{\gamma} \quad$ (closure of additive principal ordinals)
- $(1<\alpha \wedge \beta<\gamma) \Rightarrow \alpha^{\beta}<\alpha^{\gamma} \quad$ (strict right monotonicity)
- $\beta<\gamma \Rightarrow \beta^{\alpha} \leq \gamma^{\alpha} \quad$ (weak left monotonicity)

