Termination Examples

Pete Manolios
 Northeastern

Formal Methods, Lecture 2
September 2008

Termination examples

- Does the following terminate?
(app xy) =
(if (endp x)
y
(cons (car x) (app (cdr x) y)))
I Yes
- Recurring down a list

Termination examples

- Does the following terminate?
(foo $\mathrm{x} y$) =
(if (consp x)
y
(cons (car x) (foo (cdr x) y)))
No
. Consider (foo nil nil)

Termination examples

- Does the following terminate?
(foo $x y$) $=$
(if (consp x)
y
(cons (car x) (app (cdr x) y)))
I Yes
- Not recursive

Termination examples

- Does the following terminate?
(f x) $=$
(if (endp x)
1
(+ (f (car x)) (f (cdr x))))
1 Yes
. Recurring down a tree

Termination examples

- Does the following terminate?
(f x) $=$ (not (fx))
I No
- Does it lead to unsoundness?
- Yes
I. Ouch! We can now prove any theorem.

Termination examples

- Does the following terminate?
(h n) $=$
(if (= n 0)
nil (h(-n 1)))
No
Does introducing g lead to unsoundness?
. No

Termination examples

- Does the following terminate?
(gn n$)=$
(if (= n 0)
nil
(cons nil (g (- n 1))))
No
Does introducing g lead to unsoundness?
1 Yes

Termination examples

Does the following terminate?
$(\mathrm{f} \mathrm{n})=$
(cond ((or (zp n) (<= n 1))
n)
((evenp n)
(f (/ n 2)))
$(t(f(1+n))))$
Yes
Why?

Termination examples

Does the following terminate?
(fn) $=$
(cond ((or (zp n) (<= n 1))
n)
((evenp n)
(f (/ n 2)))
($\left.\left.\left(\mathrm{f}\left(1+\left({ }^{*} 2 \mathrm{n}\right)\right)\right)\right)\right)$
I No: 3, 7, 15, ...
Does introducing f lead to unsoundness?
Definitely not

Termination examples

Does the following terminate?
(c n) =
(cond ((or (zp n) (<= n 1))
n)
((evenp n)
(c (/ n 2)))
$\left.\left(\mathrm{t}\left(\mathrm{c}\left(1+\left({ }^{*} 3 \mathrm{n}\right)\right)\right)\right)\right)$

- Probably

Does introducing c lead to unsoundness?
Definitely not

Termination examples

Does the following terminate?
(ack x y) =
(cond ((zp x)
$(1+y))$
((zp y)
(ack (1-x) 1))
(t (ack (1-x) (ack x (1-y)))))
Yes
Why?
Challenge problem: What is the largest n for which compute (ack n n)?
Let's try it w/ ACL2s. See the attached ACL2s file.

