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Example: Group Theory
(G1) For all x, y, z: (x • y) • z = x • (y • z)
(G2) For all x: x • e = x
(G3) For all x there is a y such that: x • y = e

Theorem: For every x, there is a y such that y • x = e
Proof: 
 By (G3) there is: a y s.t. x • y = e and a z s.t. y • z = e
 Now: y • x = y • x • e = y • x • y • z = y • e • z = y • z = e
Is this true for all groups? Why? 
How many groups are there?
Are there true statements about groups with no proof?

First Order Logic
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First Order Logic forms the foundation of mathematics
We study various objects, e.g., groups
Properties of objects captured by “non-logical” axioms 

(G1-G3 in our example) 
Theory consists of all consequences of “non-logical” axioms

Derivable via logical reasoning alone 
That’s it; no appeals to intuition

Separation into non-logical axioms logical reasoning is 
astonishing: all theories use exactly same reasoning 
But, what is a proof (Φ ⊢ φ)?
Question leads to computer science
Proof should be so clear, even a machine can check it

First Order Logic
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Every FOL (first order language) includes
Variables v0, v1, v2, ...
Boolean connectives: ∨, ¬
Equality: =
Parenthesis: (, )
Quantifiers: ∃ 

The symbol set of a FOL contains (possibly empty) sets of
relation symbols, each with an arity > 0 
function symbols, each with an arity > 0
constant symbols

Example: groups 2-ary function symbol • and constant e
Set theory: ∈, a 2-ary relation symbol, ...

First Order Logic: Syntax
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Terms denote objects of study, e.g., group elements
The set of S-terms is the least set closed under:

Every variable is a term
Every constant is a term
If t1, ..., tn are terms and f is an n-ary function symbol, 
then f(t1, ..., tn) is a term

First Order Logic: Terms
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Formulas: statements about the objects of study
An atomic formula of S is

t1 = t2  or
R(t1, ..., tn), where ti is an S-term and R is an n-ary 
relation symbol in S

The set of S-formulas is the least set closed under:
Every atomic formula is a formula 
If φ, ψ are S-formulas and x is a variable, then                 
¬φ, (φ ∨ ψ), and ∃xφ are S-formulas

All Boolean connectives can be defined in terms of ¬ and ∨ 
We can define ∀xφ to be ¬∃x¬φ

First Order Logic: Formulas
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Define the notion of a free variable for an S-formula
The definition of formula depends on that of term
So, we’re going to need an auxiliary definition: 

var(x) = {x}
var(c) = {}
var(f(t1, ..., tn)) = var(t1) ∪ … ∪ var(tn)

Is this a definition?
free(t1 = t2) = var(t1) ∪ var(t2)
free(R(t1, ..., tn)) = var(t1) ∪ … ∪ var(tn)
free(¬φ) = free(φ)
free((φ ∨ ψ)) = free(φ) ∪ free(ψ)
free(∃xφ) =  free(φ) \ {x}

Definitions on Terms & Formulas
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What does ∃v0R(v0, v1) mean?
It depends on:

What R means (what relation over what domain?)
What v1 means (what element of the domain?) 

What if the is domain ℕ, R is <, and v1 is 1?  If v1 is 0?
An S-interpretation ℐ = ⟨A, a, β⟩ where

A is a non-empty set (domain or universe)
a is a function with domain S
β: Var ➝ A is an assignment
If c ∈ S is a constant, then a.c ∈ A 
If f ∈ S is an n-ary function symbol, then a.f : An ➝ A
If R ∈ S is an n-ary relation symbol, then a.R ⊆ An

Semantics of First Order Logic
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The meaning of a term in an interpretation ℐ = ⟨A, a, β⟩
If v ∈ Var, then  ℐ.v = β.v

If c ∈ S is a constant, then ℐ.c = a.c 

If f(t1, ..., tn) is a term, then ℐ(f(t1, ..., tn)) is (a.f)(ℐ.t1, ...,ℐ.tn)
What it means for an interpretation to satisfy a formula:
ℐ ⊨ (t1 = t2)  iff  ℐ.t1 = ℐ.t2
ℐ ⊨ R(t1, ..., tn)  iff  ⟨ℐ.t1, ...,ℐ.tn⟩ ∈ a.R
ℐ ⊨ ¬φ  iff  not ℐ ⊨ φ

ℐ ⊨ (φ ∨ ψ)  iff  ℐ ⊨ φ or ℐ ⊨ ψ

ℐ ⊨ ∃xφ  iff  for some b ∈ A, ℐ(x←b) ⊨ φ 

Meaning via Interpretations
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Let Φ be a set of formulas and φ a formula
ℐ ⊨ Φ  (ℐ is a model of Φ) iff for every φ ∈ Φ, ℐ ⊨ φ
Φ ⊨ φ (φ is a consequence of Φ) iff for every interpretation, 
ℐ, which is a model of Φ, we have that ℐ ⊨ φ

A formula φ is satisfiable, written Sat φ, iff there is an 
interpretation which is a model of φ
A set of formulas Φ is satisfiable (Sat Φ), iff there is an 
interpretation which is a model of all the formulas in Φ

Lemma: For all φ, Φ: Φ ⊨ φ iff not Sat (Φ ∪ {¬φ})

Models & Consequence
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Φ ⊢ φ denotes that φ is provable from Φ 
Provability should be machine checkable
It may seem hopeless to nail down what a proof is

Don’t mathematicians expand their proof methods?
FOL has a fairly simply set of obvious rules 
There are many equivalent ways of defining proof

Proof Theory
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A sequent is a nonempty sequence of formulas
Sequent rules:
Γ  ¬φ   ψ
Γ  ¬φ   ¬ψ                   if φ is a member of Γ
Γ   φ                  Γ   φ

The left rule says if you have a proof of both ¬ψ and ψ 
from Γ∪ {¬φ}, that constitutes a proof of φ from Γ
If there is a derivation of the sequent  Γ φ, then we write    
⊢ Γ φ and say that Γ φ is derivable
A formula φ is formally provable or derivable from a set Φ 
of formulas, written Φ ⊢ φ, iff there are finetely many 
formulas φ1, ..., φn in Φ s.t. ⊢ φ1 ... φn φ 

Sequent Calculus
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While we haven’t shown a full proof system, the following 
turns out to be easy to show:
Φ ⊢ φ  implies  Φ ⊨ φ 
What about the converse?
Gödel’s completeness theorem: Φ ⊨ φ  implies  Φ ⊢ φ
Lemma: Con Φ implies Sat Φ
Φ is consistent, written Con Φ, iff there is no formula φ  
such that Φ ⊢ φ  and Φ ⊢ ¬φ 
Proof:                                          Φ ⊨ φ 
iff  {previous lemma}                   not Sat (Φ ∪ {¬φ}) 
iff  {above lemma, soundness}   not Con (Φ ∪ {¬φ})
iff  {hint: use first sequent rule}   Φ ⊢ φ

Gödelʼs Completeness Theorem
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Φ ⊢ φ  iff  Φ ⊨ φ 
What does this mean for group theory?
What about new proof techniques?
Once we show the equivalence between ⊢ φ  and  ⊨, we 
can transfer properties of one to the other

Compactness theorem:                                                  
(a) Φ ⊨ φ iff there is a finite Φ0 ⊆ Φ such that Φ0 ⊨ φ      
(b) Sat Φ iff for all finite Φ0 ⊆ Φ, Sat Φ0 

From the proof, we get the Löwenheim-Skolem theorem: 
Every satisfiable and at most countable set of formulas is 
satisfiable over a domain which is at most countable

Gödelʼs Completeness Theorem
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A set is recursive iff ∈ can be decided by a Turing machine
Assuming Con(ZF), the set {φ : ZF ⊢ φ} is not recursive
More generally, for any consistent extension C of ZF:

{φ : C ⊢ φ} is not recursive
Intuitively clear: embed Turing machines in set theory
Encode halting problem as a formula in set theory

Theorem: If C is a recursive consistent extension of ZF, 
then it is incomplete, i.e., there is a formula φ such that     
C ⊬ φ and C ⊬ ¬φ
Proof Outline: If not, then for every φ, either C ⊢ φ or        
C ⊢ ¬φ. We can now decide C ⊢ φ: enumerate all proofs 
of C. Stop when a proof for φ or ¬φ is found

Gödelʼs 1st Incompleteness Theorem
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TMn is the nth Turing machine 
TM is a Turing machine that given input n:

Searches for a proof in PA that “TMn does not halt at n” 
If it finds a proof, TM halts; otherwise TM does not halt 

Let TM be TMk. What if we run TMk at k? 
Case 1. There is a proof in PA that “TMk does not halt at k”, so:

TMk halts at k
But then PA proves “TMk halts at k”
Since Con(PA), this is impossible

Case 2. (*)There is no proof in PA that “TMk does not halt at k”
Then (⧺)TMk does not halt at k 

We proved: (⧺) and  (*),  the 1st Incompleteness theorem for PA 
Also, if PA can prove Con(PA), then PA can prove (*), (⧺)
Thus, PA would prove: (*) & PA proves “TMk does not halt at k”
Hence Inc(PA); thus PA cannot prove its own consistency

Gödelʼs 2nd Incompleteness Theorem
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In ZF, the axiom of choice is neither provable nor refutable
In ZFC, the continuum hypothesis is neither provable nor 
refutable 
By Gödel’s first incompleteness theorem, no matter how 
we extend ZFC, there will always be sentences which are 
neither provable nor refutable
There are non-standard models of ℕ, ℝ (un/countable)
Since any reasonable proof theory has to be decidable, 
and TMs can be formalize in FOL (set theory), any logic 
can be reduced to FOL 
Building reliable computing systems requires having 
programs that can reason about other programs and this 
means we have to really understand what a proof is so 
that we can program a computer to do it 

FOL Observations
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