First Order Logic

Pete Manolios Northeastern

Formal Methods, Lecture 10

October 2008

First Order Logic

- Example: Group Theory
 - (G1) For all x, y, z: $(x \cdot y) \cdot z = x \cdot (y \cdot z)$
 - (G2) For all x: x e = x
 - G3) For all x there is a y such that: $x \cdot y = e$
- Theorem: For every x, there is a y such that $y \cdot x = e$
- Proof:

By (G3) there is: a y s.t. $x \cdot y = e$ and a z s.t. $y \cdot z = e$

Now: $y \cdot x = y \cdot x \cdot e = y \cdot x \cdot y \cdot z = y \cdot e \cdot z = y \cdot z = e$

- Is this true for all groups? Why?
- How many groups are there?
- Are there true statements about groups with no proof?

First Order Logic

- First Order Logic forms the foundation of mathematics
- We study various objects, e.g., groups
- Properties of objects captured by "non-logical" axioms
 - (G1-G3 in our example)
- Theory consists of all consequences of "non-logical" axioms
 - Derivable via logical reasoning alone
 - That's it; no appeals to intuition
- Separation into non-logical axioms logical reasoning is astonishing: all theories use exactly same reasoning
- But, what is a proof $(\Phi \vdash \phi)$?
- Question leads to computer science
- Proof should be so clear, even a machine can check it

First Order Logic: Syntax

Every FOL (first order language) includes

- Variables v₀, v₁, v₂, ...
- Boolean connectives: v, ¬
- Equality: =
- Parenthesis: (,)
- Quantifiers: 3
- The symbol set of a FOL contains (possibly empty) sets of
 - relation symbols, each with an arity > 0
 - function symbols, each with an arity > 0
 - constant symbols
- Example: groups 2-ary function symbol and constant e
- Set theory: \in , a 2-ary relation symbol, ...

First Order Logic: Terms

Terms denote objects of study, e.g., group elements

- The set of S-terms is the least set closed under:
 - Every variable is a term
 - Every constant is a term
 - If $t_1, ..., t_n$ are terms and f is an *n*-ary function symbol, then $f(t_1, ..., t_n)$ is a term

First Order Logic: Formulas

- Formulas: statements about the objects of study
- An atomic formula of S is

 $t_1 = t_2$ or

- R(t_1 , ..., t_n), where t_i is an S-term and R is an *n*-ary relation symbol in S
- The set of S-formulas is the least set closed under:
 - Every atomic formula is a formula
 - If φ , ψ are S-formulas and x is a variable, then $\neg \varphi$, ($\varphi \lor \psi$), and $\exists x \varphi$ are S-formulas
- All Boolean connectives can be defined in terms of \neg and \lor
- We can define ∀xφ to be ¬∃x¬φ

Definitions on Terms & Formulas

- Define the notion of a free variable for an S-formula
- The definition of formula depends on that of term
- So, we're going to need an auxiliary definition:

```
var(x) = \{x\}

var(c) = \{\}

var(f(t_1, ..., t_n)) = var(t_1) \cup \cdots \cup var(t_n)
```

```
Is this a definition?
```

```
free(t_1 = t_2) = var(t_1) \cup var(t_2)

free(R(t_1, ..., t_n)) = var(t_1) \cup \cdots \cup var(t_n)

free(\neg \varphi) = free(\varphi)

free((\varphi \lor \psi)) = free(\varphi) \cup free(\psi)

free(\exists x \varphi) = free(\varphi) \setminus \{x\}
```

Semantics of First Order Logic

- What does $\exists v_0 R(v_0, v_1)$ mean?
- It depends on:
 - What *R* means (what relation over what domain?)
 - What *v*¹ means (what element of the domain?)
- What if the is domain \mathbb{N} , *R* is <, and v_1 is 1? If v_1 is 0?
- An S-interpretation $\mathcal{J} = \langle A, a, \beta \rangle$ where
 - *A* is a non-empty set (domain or universe)
 - *a* is a function with domain *S*
 - β: *Var* → *A* is an assignment
 - If $c \in S$ is a constant, then $a.c \in A$
 - If $f \in S$ is an n-ary function symbol, then $a.f : A^n \rightarrow A$
 - If $R \in S$ is an *n*-ary relation symbol, then $a.R \subseteq A^n$

Meaning via Interpretations

- The meaning of a term in an interpretation $\mathcal{J} = \langle A, a, \beta \rangle$
 - If $v \in Var$, then $\mathcal{J}.v = \beta.v$
 - If $c \in S$ is a constant, then $\mathcal{J}.c = a.c$

If $f(t_1, ..., t_n)$ is a term, then $\mathcal{J}(f(t_1, ..., t_n))$ is $(a.f)(\mathcal{J}.t_1, ..., \mathcal{J}.t_n)$ What it means for an interpretation to satisfy a formula:

$$\mathcal{J} \models (t_1 = t_2)$$
 iff $\mathcal{J}.t_1 = \mathcal{J}.t_2$

- $\mathcal{J} \vDash R(t_1, ..., t_n) \text{ iff } \langle \mathcal{J}.t_1, ..., \mathcal{J}.t_n \rangle \in a.R$

Models & Consequence

- Let Φ be a set of formulas and ϕ a formula
- $\mathcal{J} \models \Phi \ (\mathcal{J} \text{ is a model of } \Phi) \text{ iff for every } \phi \in \Phi, \ \mathcal{J} \models \phi$
- $\Phi \vDash \varphi$ (φ is a consequence of Φ) iff for every interpretation, \mathscr{J} , which is a model of Φ , we have that $\mathscr{J} \vDash \varphi$
- A formula φ is satisfiable, written Sat φ, iff there is an interpretation which is a model of φ
- A set of formulas Φ is satisfiable (Sat Φ), iff there is an interpretation which is a model of all the formulas in Φ
 - Lemma: For all φ , Φ : $\Phi \vDash \varphi$ iff not *Sat* ($\Phi \cup \{\neg \varphi\}$)

Proof Theory

- $\Phi \vdash \phi$ denotes that ϕ is provable from Φ
- Provability should be machine checkable
- It may seem hopeless to nail down what a proof is
 - Don't mathematicians expand their proof methods?
- FOL has a fairly simply set of obvious rules
- There are many equivalent ways of defining proof

Sequent Calculus

A sequent is a nonempty sequence of formulasSequent rules:

Γ¬φψ

- Γ ¬φ ¬ψ
 Γ φ
 Γ φ
 Γ φ
 Γ φ
 The left rule says if you have a proof of both ¬ψ and ψ from Γυ {¬φ}, that constitutes a proof of φ from Γ
- If there is a derivation of the sequent $\Gamma \phi$, then we write $\vdash \Gamma \phi$ and say that $\Gamma \phi$ is *derivable*
- A formula φ is *formally provable* or *derivable* from a set φ of formulas, written $\varphi \vdash \varphi$, iff there are finetely many formulas $\varphi_1, ..., \varphi_n$ in φ s.t. $\vdash \varphi_1 ... \varphi_n \varphi$

Gödel's Completeness Theorem

- While we haven't shown a full proof system, the following turns out to be easy to show:
- $\Phi \vdash \phi$ implies $\Phi \vDash \phi$
- What about the converse?
- **Gödel's completeness theorem:** $\Phi \models \varphi$ implies $\Phi \vdash \varphi$
- Lemma: Con Φ implies Sat Φ
- Φ is consistent, written Con Φ, ff there is no formula φ such that Φ ⊢ φ and Φ ⊢ ¬φ
- Proof:
 - iff {previous lemma}

Φ ⊨ φnot Sat ($Φ ∪ {¬φ}$)

- iff {above lemma, soundness} not Con ($\Phi \cup \{\neg \phi\}$)
- iff {hint: use first sequent rule} $\Phi \vdash \phi$

Gödel's Completeness Theorem

 $\bullet \vdash \phi \quad \text{iff} \quad \Phi \models \phi$

What does this mean for group theory?

- What about new proof techniques?
- Once we show the equivalence between $\vdash \phi$ and \models , we can transfer properties of one to the other
 - Compactness theorem:
 - (a) $\Phi \models \varphi$ iff there is a finite $\Phi_0 \subseteq \Phi$ such that $\Phi_0 \models \varphi$

(b) Sat Φ iff for all finite $\Phi_0 \subseteq \Phi$, Sat Φ_0

From the proof, we get the Löwenheim-Skolem theorem: Every satisfiable and at most countable set of formulas is satisfiable over a domain which is at most countable

Gödel's 1st Incompleteness Theorem

- A set is *recursive* iff ∈ can be decided by a Turing machine
- Assuming Con(ZF), the set { ϕ : ZF $\vdash \phi$ } is not recursive
- More generally, for any consistent extension C of ZF:
 - $\{\phi : C \vdash \phi\}$ is not recursive
 - Intuitively clear: embed Turing machines in set theory
 - Encode halting problem as a formula in set theory
- Theorem: If C is a recursive consistent extension of ZF, then it is incomplete, i.e., there is a formula φ such that $C \nvDash \varphi$ and $C \nvDash \neg \varphi$
- Proof Outline: If not, then for every φ, either C⊢ φ or C⊢ ¬φ. We can now decide C⊢ φ: enumerate all proofs of C. Stop when a proof for φ or ¬φ is found

Gödel's 2nd Incompleteness Theorem

- TM_n is the nth Turing machine
- TM is a Turing machine that given input *n*:
 - Searches for a proof in PA that "TM_n does not halt at n"
 - If it finds a proof, TM halts; otherwise TM does not halt
- Let TM be TM_k . What if we run TM_k at k?
- Case 1. There is a proof in PA that "TM_k does not halt at k", so:
 - **TM** $_k$ halts at k
 - But then PA proves "TM_k halts at k"
 - Since Con(PA), this is impossible
- Case 2. (*)There is no proof in PA that "TM_k does not halt at k"
 Then (+)TM_k does not halt at k
- We proved: (+) and (*), the 1st Incompleteness theorem for PA
- Also, if PA can prove Con(PA), then PA can prove (*), (#)
- Thus, PA would prove: (*) & PA proves "TM_k does not halt at k"
- Hence Inc(PA); thus PA cannot prove its own consistency

FOL Observations

- In ZF, the axiom of choice is neither provable nor refutable
- In ZFC, the continuum hypothesis is neither provable nor refutable
- By Gödel's first incompleteness theorem, no matter how we extend ZFC, there will always be sentences which are neither provable nor refutable
- There are non-standard models of N, R (un/countable)
- Since any reasonable proof theory has to be decidable, and TMs can be formalize in FOL (set theory), any logic can be reduced to FOL
- Building reliable computing systems requires having programs that can reason about other programs and this means we have to really understand what a proof is so that we can program a computer to do it