
Introduction

Pete Manolios
Northeastern

Formal Methods, Lecture 1 September 2008

1

Syllabus

Go over syllabus
Introductions

2

Instead of debugging a program, one
should prove that it meets its
specifications, and this proof should be
checked by a computer program.

— John McCarthy
“A Basis for a Mathematical Theory of
Computation,” 1961

Motivation

3

1970’s
Edinburgh Pure Lisp Theorem Prover (1973)
A Computational Logic (1978)

1980’s
NQTHM (1981)
ACL2 (1989) A Computational Logic for Applicative Common Lisp

1990’s-Present
Kaufmman joins as developer
Workshops (7 already); huge regression suite

2000’s:
ACL2 books
Development environments (ACL2 Sedan, Dracula)
2005 ACM Software System Award (Boyer, Kaufmann, Moore)

Boyer-Moore Theorem Provers

4

1970’s: Simple List Processing
Associativity of append
Prime factorizations are unique

1980’s: Academic Math & CS
Invertibility of RSA
Undecidability of halting problem
Gödel’s First Incompleteness Theorem
Gauss’ Law of Quadratic Reciprocity
CLI Stack:

Microprocessor
Assembler-linker-loader, Compiler, OS
High-level language

Boyer-Moore Theorems Proved

5

CLI Stack

6

1990ʼs: Industrial Applications
FDIV AMD Floating Point ...
Motorola CAP DSP

Bit/cycle-accurate model

Run fasters than SPW model

Proved correctness of pipeline
hazard detection in microcode

Verified microcode programs

Rockwell Collins JEM1

Rockwell Collins AAMP7
MILS EAL-7 certification from
NSA for their crypto processor

Verified separation kernel

7

Hardware Verification: Motivation

 International Technology Roadmap for
 Semiconductors, 2005 Edition.

Verification has become the dominant cost in the design process. In
current projects, verification engineers outnumber designers, with this
ratio reaching two or three to one ….
...
Without major breakthroughs, verification will be a non-scalable, show-
stopping barrier to further progress in the semiconductor industry.
…
The overall trend from which these breakthroughs will emerge is the
shift from ad hoc verification methods to more structured, formal
processes.

8

Hardware Verification Challenge

Verification costs range from 30%-70% of design cost
R&D for high-end CPU: 900+ team, costing ~ $1B
Bob Bently: FDIV bug would cost $12B in 2005 terms
The verification problem is getting worse

Nanotechnology: many inherently unreliable components
Multicores: concurrency, coherence, parallelism

9

ACL2 theorem prover
Runs like a well-tuned race car in
the hands of an expert
Unfortunately, novices don’t have
the same experience
Disseminate: wrote a book
Not enough: undergrads

ACL2s: The ACL2 Sedan
From race car to sedan
Self-teaching
Control a machine that is thinking
about other machines
Visualize what ACL2 is doing
Levels & termination
Used in several classes
We’ll use it in this class

ACL2s

10

A programming language:
Applicative, functional subset of Lisp
Compilable and executable
Untyped, first-order

ACL2 is ...

11

The ACL2 universe, U consists of the following objects
Atoms

Numbers includes integers, rationals, and complex rationals
Examples include -1, 3/2, and #c(-1 2)

Characters represent the ASCII characters
Examples include #\2, #\a, and #\Space

Strings are finite sequences of characters
An example is "Hello World!"

Symbols consist of two strings:
a package name and a symbol name
For example, the symbol FOO::BAR has package name
"FOO" and symbol name "BAR"

ACL2 Universe

12

Conses are ordered pairs (binary trees) of objects
The left component of a cons is called the car
The right component is called the cdr

(1 . "A")
(1 2 3)
((A . 1) (B . 2) (C . 3))

Notes
The symbols t and nil are used to denote true and false
Nil also denotes the empty list
Conses can be used to represent records and finite functions

ACL2 Universe

13

A programming language:
Applicative, functional subset of Lisp
Compilable and executable
Untyped, first-order

DEMO
ACL2 Web page
ACL2 Sedan Web page

ACL2 is ...

14

A programming language:
Applicative, functional subset of Lisp
Compilable and executable
Untyped, first-order

A mathematical logic:
First-order predicate calculus
With equality, induction, recursive definitions
Ordinals up to ε0 (termination & induction)

ACL2 is ...

15

Functions are defined using defun
Example: (defun succ (x) (+ x 1))
The form of a defun is (defun f ... (x1 ... xn) body), where:

x1 ... xn are distinct variable symbols
the free variables in body are in x1 ... xn

... are for documentation and declarations (optional)
body is a valid expression (history)
if f is recursive we must prove that it terminates

ACL2 logic is extended with the axiom (f x1 ... xn) = body

Definitional Principle

16

