
Formal Methods (8803, Spring 2004) Panagiotis Manolios
Relations handout 2/2004

These notes are concerned with relations. Throughout you will find “exer-
cises.” You should work out solutions to the exercises that are not obvious to
you, but you only need to turn in solutions if explicitly told to do so.

A warning. The notation I use differs from the notation you will see in the
books we will use for the course. Being exposed to various notational conventions
is a good thing, but may lead to confusion, so if something is not clear, please
ask!

1 Initial Notation and Definitions
�

and ω both denote the natural numbers, i.e., {0, 1, . . .}. The ordered pair
whose first component is i and whose second component is j is denoted 〈i, j〉.
[i..j] denotes the closed interval {k ∈

�
: i ≤ k ≤ j}; parentheses are used to

denote open and half-open intervals, e.g., [i..j) denotes the set {k ∈
�

: i ≤
k < j}.

R is a binary relation on set S if R ⊆ S × S = {〈x, y〉 : x, y ∈ S}. We
abbreviate 〈s, w〉 ∈ R by sRw. A function is a relation such that xRy and xRw
implies y = w.

Function application is sometimes denoted by an infix dot “.” and is left
associative. That is, f.x is the unique y such that xfy. This allows us to use the
curried version of a function when it suits us, e.g., we may write f.x.y instead
of f(x, y). That is, f.x.y is really (f.x).y, where f is a function of one argument
that returns f.x, a function of one argument.

From highest to lowest binding power, we have: parentheses, function appli-
cation, binary relations (e.g., sBw), equality (=) and membership (∈), conjunc-
tion (∧) and disjunction (∨), implication (⇒), and finally, binary equivalence
(≡). Spacing is used to reinforce binding: more space indicates lower binding.

〈Qx : r : b〉 denotes a quantified expression, where Q is the quantifier, x
the bound variable, r the range of x (true if omitted), and b the body. We
sometimes write 〈Qx ∈ X : r : b〉 as an abbreviation for 〈Qx : x ∈ X ∧ r : b〉,
where r is true if omitted, as before.

Cardinality of a set S is denoted by |S|. P(S) denotes the powerset of S.
A function from [0..n), where n is a natural number, is called a finite sequence

or an n-sequence.
What are numbers as mathematical objects? von Neumann proposed the

following: 0 = ∅, 1 = {0}, 2 = {0, 1}, . . ., so n = [0..n). Thus an n-sequence is a
function from n.

An ω-sequence is a function from ω. We may sometimes refer to ω-sequences
as infinite sequences, but as we will see there are infinite sequences that are
“longer” than ω-sequences.

When we write x ∈ σ, for a sequence σ, we mean that x is in the range of σ.
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2 Binary Relations

Let B,C be binary relations on set S. B|A denotes B left-restricted to the set
A, i.e., B|A = {〈x, y〉 : xBy ∧ x ∈ A}.

Some important definitions follow.

• B is reflexive if 〈∀x ∈ S :: xBx〉.

• B is irreflexive if 〈∀x ∈ S :: ¬(xBx)〉.

• B is transitive if 〈∀x, y, z ∈ S :: xBy ∧ yBz ⇒ xBz〉.

• B is a preorder (also called a quasi-order) if it is reflexive and transitive.

• The identity relation, B0, is {〈x, x〉 : x ∈ S}.

• The composition of B and C is denoted B;C and is the set
{〈b, c〉 : 〈∃x :: bBx ∧ xCc〉}.

• For all natural numbers i, Bi+1 is Bi;B.

Exercise 1 Prove the following.

1. B is reflexive iff B0 ⊆ B.

2. B1 = B.

3. B is transitive iff B2 ⊆ B.

We now continue with the definitions.

• B is symmetric if 〈∀x, y ∈ S :: xBy ⇒ yBx〉.

• A preorder that is also symmetric is an equivalence relation.

• B is asymmetric if 〈∀x, y ∈ S :: xBy ⇒ ¬(yBx)〉.

• B is antisymmetric if 〈∀x, y ∈ S :: xBy ∧ yBx ⇒ x = y〉.

• A preorder that is antisymmetric is a partial order .

• If B is a partial order, 〈S,B〉 is a poset.

• The inverse of B is denoted B−1 and is {〈x, y〉 : yBx}.

Exercise 2 Prove the following.

1. B is symmetric iff B−1 ⊆ B.

2. B is antisymmetric iff B ∩ B−1 ⊆ B0.

If B is an equivalence relation, for each x ∈ S, it induces an equivalence class
[x]B = {y : xBy}. The quotient S/B is {[x]B : x ∈ S}.
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Exercise 3 Prove the following.

1. If B is an equivalence relation, then [x]B and [y]B are either identical or
disjoint.

2. If C is a preorder, then

(a) B = {〈x, y〉 : xCy ∧ yCx} is an equivalence relation.

(b) 〈S/B,4〉 is a poset, where 4 is defined as follows:
[x]B 4 [y]B ≡ xCy.

We now continue with the definitions.

• B is total (also called linear or connected) if 〈∀x, y ∈ S :: xBy ∨ yBx〉.

• A total order is a partial order that is total.

• If B is a total order, 〈S,B〉 is a toset.

• An α-sequence 〈a0, a1, a2, . . .〉, where α ∈ ω ∨ α = ω, is decreasing in
B if 〈∀i : i + 1 ∈ α : ai+1Bai〉.

• B is terminating (also called well-founded) if there is no decreasing ω-
sequence in B.

• If B is terminating, then 〈S,B〉 is a well-founded structure.

• The strict part of a relation B is {〈x, y〉 : xBy ∧ x 6= y}.

• B is a strict partial order if it is the strict part of some partial order.
Strict total orders are defined in an analogous way.

• A well order is a strict total order that is well-founded.

• If B is a well order, 〈S,B〉 is a woset.

• For T ⊆ S:

– If (m ∈ T ∧ 〈∀x ∈ T :: xBm ⇒ x = m〉), then m is a minimal
element of T (under B).

– If (m ∈ T ∧ 〈∀x ∈ T :: mBx ∨ m = x〉), then m is the least
element of T (under B).

– If (m ∈ S ∧ 〈∀x ∈ T :: mBx ∨ m = x〉), then m is a lower bound
of T (under B).

– The notions of maximal, greatest, and upper bound are defined dually,
e.g., m is a maximal element of T under B iff m is a minimal element
of T under B−1.
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Exercise 4 Prove the following.

1. B is total iff B ∪ B−1 = S × S.

2. B is a strict partial order iff it is irreflexive and transitive.

3. If ≺ is a strict partial order and x 4 y ≡ x ≺ y ∨ x = y then 4

is a partial order.

4. If 4 is a preorder and x ≺ y ≡ x 4 y ∧ ¬(y ≺ x) then ≺ is a
strict partial order.

5. B is a strict total order iff

(a) B is irreflexive.

(b) B is transitive.

(c) 〈∀x, y ∈ S :: xBy ∨ yBx ∨ x = y〉.

6. B is a well order iff it is well-founded and
〈∀x, y ∈ S :: xBy ∨ yBx ∨ x = y〉.

Exercise 5 Let ≺ be a strict partial order on S. Prove the following.

1. Prove that 〈S,≺〉 is a well-founded structure iff all non-empty subsets of
S have a minimal element under ≺.

2. Prove that 〈S,≺〉 is a woset iff all non-empty subsets of S have a least
element.

Given a set U (the “universe”), X ⊆ U , and a property P which is satisfied
by some subsets of U , the P -sets, we say that C is the P -closure of X if C is
the least P -set which includes X. If the P -sets include U and are closed under
arbitrary intersections, we say that the P -sets of U form a closure system. If
the P -sets of U form a closure system, then the P -closure of X always exists.
It is ∩{Y ⊆ U : X ⊆ Y ∧ Y is a P -set}.

Exercise 6 Prove the following, where U = S × S.

1. The reflexive relations form a closure system.

2. The irreflexive relations do not form a closure system.

3. The symmetric relations form a closure system.

4. The asymmetric relations do not form a closure system.

5. The antisymmetric relations do not form a closure system.

6. The transitive relations form a closure system.

We can therefore speak of the reflexive closure, or the symmetric closure,
or the transitive closure, or the reflexive, transitive closure, etc. B+ denotes
the transitive closure of B and B∗ denotes the reflexive, transitive closure of B.
This same notation is used in regular languages.
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