
A Lattice-Theoretic Characterization of Safety and
Liveness

Panagiotis Manolios
Georgia Institute of Technology

College of Computing, CERCS Lab
801 Atlantic Drive

Atlanta, Georgia, 30332, USA
http://www.cc.gatech.edu/∼manolios

manolios@cc.gatech.edu

Richard Trefler
University of Waterloo

School of Computer Science
200 University Avenue West

Waterloo, Ontario, N2L 3G1, Canada
http://se.uwaterloo.ca/∼trefler

trefler@cs.uwaterloo.ca

ABSTRACT
The distinction between safety and liveness properties is due
to Lamport who gave the following informal characteriza-
tion. Safety properties assert that nothing bad ever happens
while liveness properties assert that something good hap-
pens eventually. In a well-known paper Alpern and Schnei-
der gave a topological characterization of safety and liveness
for the linear time framework. Gumm has stated these no-
tions in the more abstract setting of ∨-complete Boolean
algebras. Recently, we characterized safety and liveness for
the branching time framework and found that neither the
topological characterization nor Gumm’s characterization
were general enough for our needs. We present a lattice-
theoretic characterization that allows us to unify previous
results on safety and liveness, including the results for the
linear time and branching time frameworks and for ω-regular
string and tree languages.

Categories and Subject Descriptors
F.3.1 [Logics and Meanings of Programs]: Specifying
and Verifying and Reasoning about Programs

1. INTRODUCTION
Reactive systems are non-terminating systems engaged in
ongoing interaction with an environment [9]; examples in-
clude network protocols, operating systems, on-board con-
trollers, cache coherence protocols, distributed databases,
etc. In a seminal paper, Lamport grouped linear time prop-
erties of reactive systems into three categories: safety prop-
erties, liveness properties, and properties that are neither [13].
Informally, safety properties assert that nothing bad ever
happens, whereas liveness properties assert that something
good happens eventually.

Understanding the distinction between safety and liveness

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
PODC 2003, July 13-16, 2003, Boston, Massachusetts, USA.
Copyright 2003 ACM X-XXXXX-XX-X/XX/XX ...$5.00.

—which now appears in introductory textbooks on distributed
computing— has been an ongoing research endeavor that
has yielded numerous results, some of which we now recount.

Alpern and Schneider gave a formal semantic characteri-
zation of safety and liveness in the linear time framework,
where properties and the semantics of programs are sets
of infinite strings [3]. They gave a topological characteri-
zation where safety properties are closed sets and liveness
properties are dense sets and they proved that every linear
time property can be expressed as the conjunction of a live-
ness property and a safety property. In a subsequent paper
they showed that given a Büchi automaton, B, over infinite
strings (which recognizes an ω-regular language), it is possi-
ble to decompose B into automata BS and BL such that the
set of strings accepted by BS is a safety property, the set of
strings accepted by BL is a liveness property, and the set of
strings accepted by B is equal to the intersection of the set
of strings accepted by BS and BL [4].

Sistla characterized safety and liveness for temporal logic
formulas [21], an important problem due to the wide use
of temporal logic (which was proposed for specifying and
verifying reactive systems by Pnueli [17]).

Recently, we have extended the Alpern and Schneider lin-
ear time characterization of safety and liveness properties
to branching time, where properties and the semantics of
programs are sets of infinite trees [14]. The branching time
framework includes process algebra [15] and temporal log-
ics such as CTL [5] (which is used by many model checkers
and is of great practical importance), CTL∗ [7], and the
µ-calculus [11]. We showed that any branching time prop-
erty can be decomposed into the conjunction of a safety and
liveness property. In the case where a set of trees is given
implicitly as a Rabin tree automaton, B, we showed that it
is possible to compute the Rabin automata corresponding
to the closures of the language of B. This allows us to ef-
fectively compute BS and BL such that the language of BS

is safe, the language of BL is live, and the language of B is
the intersection of the languages of BS and BL.

The distinction between safety and liveness plays an impor-
tant role in the design and analysis of reactive systems, as
the proof methods employed to check safety properties differ

1

from those used to check liveness properties. For example,
proofs of liveness properties frequently require the construc-
tion of well-founded relations —to show that the desired be-
havior cannot be avoided forever— while safety properties
are usually proved by induction on the transition relation —
to show that the prohibited behavior is never exhibited [16].
In addition, automatic proof techniques available for safety
properties often do not work with liveness properties. For
example, in some infinite state systems one can automati-
cally determine if a safety property can be violated, whereas
the existence of a fair computation cannot be so determined
[2]. In the context of model checking [5, 18], Kupferman and
Vardi show that proving safety properties is simpler than es-
tablishing general temporal logic properties [12].

The distinction between safety and liveness also has conse-
quences for security properties, as Schneider argues that en-
forceable security properties correspond to safety properties
and that security automata, which can be used to enforce
security policies, correspond to Büchi automata that accept
safe languages [20].

A lattice theoretic characterization of safety and liveness was
given by Gumm [8]. Gumm shows that given a ∨-preserving
map between complete Boolean algebras, one can derive
the Alpern and Schneider theorem characterizing safety and
liveness. This generalization was not motivated by any prac-
tical problem; in a survey of safety and liveness Kindler [10]
says of Gumm’s work “it remains an open question whether
. . . his characterization has practical relevance”.

However, there is a practical consequence, which we discov-
ered when we defined safety and liveness for branching time
logics. In the branching time framework, our semantic char-
acterization does not give rise to a topology, but it does fit
in Gumm’s framework.

But, there is a problem with Gumm’s framework. If we
consider the lattice of Büchi automata definable languages,
where meet corresponds to intersection, join to union, and
complementation to negation, then we have a Boolean al-
gebra that is not ∨-complete, so it does not fit in Gumm’s
framework. Similarly, the lattice of Rabin tree automata de-
finable languages forms a Boolean algebra that also does not
satisfy Gumm’s conditions. Therefore, we cannot appeal to
the Alpern and Schneider theorem or any of its variants to
establish that an ω-regular language (over strings or trees)
can be expressed as the intersection of a safe and live lan-
guage.

In this paper we present a simpler and more general charac-
terization of safety and liveness. As a consequence, we fur-
ther clarify the distinction between safety and liveness and
provide more powerful tools for analyzing these concepts.

1. Our results allow us to simplify previous proofs. For
example, the characterization of safety and liveness for
Büchi automata and the decomposition theorem, the
main results in [4], now follow directly from the results
in this paper. Similarly, many of our proofs on safety
and liveness in the branching time logic and for Rabin
tree automata now follow directly from the results in
this paper [14].

2. We carefully analyze the conditions required to prove
the decomposition theorem for safety and liveness. We
discuss why each of the conditions in our proofs is
required, often by providing counterexamples. Such
considerations led us to a lattice-theoretic approach,
where the basic results are stated in terms of modular,
complemented lattices.

3. Our lattice-theoretic framework is more general, there-
fore simpler than topological framework, e.g., we do
not require closure operators to distribute over joins
(unions), thus, not only are our results applicable in
more contexts, but they are easier to apply, as one
needs to establish fewer properties than were previ-
ously required.

In the next section, we review the Alpern and Schneider
characterization of safety and liveness for the linear time
framework and we consider examples due to Rem [19]. In
Section 3 we give our lattice-theoretic characterization and
show how it applies to the linear time case. In Section 4 we
give our branching time characterization and relate it to the
lattice-theoretic view. Conclusions are given in Section 5.

2. LINEAR TIME FRAMEWORK
2.1 Preliminaries
�

and ω both denote the natural numbers. Function ap-
plication is sometimes denoted by an infix dot “.” and is
left associative. P(S) denotes the powerset of S. Dom.f

denotes the domain of function f . S∗ denotes the set of
finite sequences over S; Sω denotes the set of infinite se-
quences (functions from ω) over S; S∞ = S∗ ∪Sω. Suppose
s, t ∈ S∞, |s| denotes the length of s; s is a prefix of t (s � t)
iff Dom.s ⊆ Dom.t and for all i ∈ Dom.s, s.i = t.i; s is a
proper prefix of t (s ≺ t) iff s � t and s 6= t.

〈Qx : r : b〉 denotes a quantified expression, where Q is the
quantifier, x the bound variable, r the range of x (true if
omitted), and b the body. We sometimes write 〈Qx ∈ X :
r : b〉 as an abbreviation for 〈Qx : x ∈ X ∧ r : b〉, where r is
true if omitted, as before. From highest to lowest binding
power, we have: parentheses, function application, binary
relations (e.g., sBw), equality (=) and membership (∈),
negation (¬), conjunction (∧) and disjunction (∨), impli-
cation (⇒), and finally, binary equivalence (≡). Spacing is
used to reinforce binding: more space indicates lower bind-
ing.

We use a proof format that we exhibit with an example.
Suppose that v is a preorder, then a proof A v Z is given
in the following form.

Proof

A

v { Hint why A v B }

B

. . .

Z �

2

The first three lines establish that A v B, as per the hint.
Lines three through five establish that B is related to the
expression on line five of the proof by v (or any restriction
of v, usually =), and so on. Chaining these steps together,
we conclude that A v Z.

Throughout this paper Σ denotes a fixed alphabet, a non-
empty set of symbols.

We assume familiarity with the Linear Temporal Logic (LTL)
operators X (next-time, sometimes written ©), F (eventu-
ally, sometimes written 3), G (always, sometimes written
2) and the CTL and CTL∗ operators A (along all paths),
and E (there exists a path). A good reference is [6].

2.2 Safety and Liveness
We review the main results of the Alpern and Schneider
characterization for the linear time framework [3]. Our pre-
sentation differs from the original, e.g., we use a closure
operator, but the results are the same. The linear time clo-
sure operator over strings, lcl : P(Σω) → P(Σω), can be
defined as follows.

lcl .T = {t ∈ Σω | 〈∀x : x ≺ t : 〈∃t′ ∈ T :: x � t
′〉〉}

We say that cl : P(X) → P(X) is a topological-closure op-
erator on X if it satisfies the following four properties.

1. cl .∅ = ∅

2. A ⊆ cl .A

3. cl(cl .A) = cl .A

4. cl(A ∪B) = cl .A ∪ cl .B

From a basic result of topology, a topological-closure oper-
ator on X defines a topology, where a set A ⊆ X is closed
iff cl .A = A.

It turns out that lcl is a topological-closure operator on Σω.
Safety properties are defined to be the closed sets and live-
ness properties are defined to be the dense sets. It then
follows from topological considerations that any property P

is the intersection of lcl .P , a safety property, and P ∪¬lcl .P ,
a liveness property.

Lemma 1 P ∪ ¬lcl .P is a liveness property.

Proof

lcl(P ∪ ¬lcl .P)

= { lcl distributes over ∪ }

lcl .P ∪ lcl(¬lcl .P)

⊇ { lcl .A ⊇ A, Set theory }

lcl .P ∪ ¬lcl .P

= { Set theory }

Σω
�

Theorem 1 Any property can be decomposed into the in-
tersection of a safety and liveness property.

Proof

lcl .P ∩ (P ∪ ¬lcl .P)

= { Set theory }

(lcl .P ∩ P) ∪ (lcl .P ∩ ¬lcl .P)

= { A ⊆ lcl .A, Set theory }

P ∪ ∅

= { Set theory }

P �

2.3 Examples
We now take a moment to consider some examples due to
Martin Rem [19]. In the examples t is an infinite sequence
over Σ.

p0: false (corresponds to ∅)
p1: the first symbol of t is a

p2: the first symbol of t differs from a

p3: the first symbol of t is a

and t contains a symbol that differs from a

p4: the number of a’s in t is finite
p5: the number of a’s in t is infinite
p6: true (corresponds to Σω)

Below, we give our translation of the above properties to
LTL. Recall that F means eventually (and is sometimes writ-
ten 3) and G means always (and is sometimes written 2).

p0: false

p1: a

p2: ¬a

p3: a ∧ F ¬a

p4: FG ¬a

p5: GF a

p6: true

Note that p0, p1, p2, and p6 are safety properties. The
closure of p3 is p1, so p3 is neither a safety property nor a
liveness property. The closures of p4 and p5 are both Σω;
thus, they are liveness properties, but they are not safety
properties.

2.4 Büchi Automata
In this section, we review the results in [4]. A Büchi au-
tomaton B is a 5-tuple (Σ, Q, q0, δ, F) where Σ is a finite
alphabet, Q is a finite set of states, q0 ∈ Q is the start state,
δ : Q × Σ → P(Q) is the transition relation, and F is a set
of accepting states.

Let t ∈ Σω. A run of B on t is a Q-labeled sequence σ such
that σ.0 = q0 and for all i ∈ ω, σ(i + 1) ∈ δ(σ.i, t.i). Run σ

is accepting iff some state of F occurs infinitely often in σ.
L(B) = {t ∈ Σω | there is an accepting run of B on t} is the
language of B.

It is possible to decompose B into automata BS and BL such
that the set of strings accepted by BS is a safety property

3

and the set of strings accepted by BL is a liveness property
[4]. Furthermore, the set of strings accepted by B is equal to
the intersection of the set of strings accepted by BS and BL,
as before. The idea is to define a closure operator on Büchi
automata. The operator first removes states that cannot
reach an accepting state and then makes every remaining
state an accepting state. In this way, the fairness condition
is made trivial. It can then be shown that applying this
operator to B results in an automaton whose language is the
lcl of the language of B. Since Büchi automata are closed
under complementation and union, the liveness automaton
is the union of B with the negation of the closure of B, as in
Theorem 1.

3. LATTICE THEORETIC CHARACTERI-
ZATION

Recall that a lattice 〈L,≤〉 consists of a set L and a partial
order ≤ on L such that any pair of elements has a meet
(∧) and join (∨). From a more algebraic, but equivalent,
viewpoint, a lattice is a triple 〈L,∧,∨〉 where ∧ and ∨ satisfy
the associative, commutative, idempotency, and absorption
laws.

(associative law) (a ∨ b) ∨ c = a ∨ (b ∨ c)

(commutative law) a ∨ b = b ∨ a

(idempotency law) a ∨ a = a

(absorption law) a ∨ (a ∧ b) = a

Each law also has a dual, which is obtained by interchanging
∨ and ∧. We can then define a ≤ b ≡ (a ∧ b) = a and
it follows that a ≤ b ≡ (a ∨ b) = b. We will stick to
the algebraic view. Note that in light of associativity and
commutativity, we do not need parentheses for sequences of
joins or meets.

Lemma 2

1. a ≤ b ⇒ a ∨ c ≤ b ∨ c

2. a ≤ b ⇒ a ∧ c ≤ b ∧ c

Proof

a ∨ c

≤ { Absorption (x ≤ x∨y), Associativity, Commutativity }

a ∨ c ∨ b

= { a ≤ b, hence a ∨ b = b }

b ∨ c

The proof of (2) is similar. �

A lattice-closure on L is a function cl : L→ L such that the
following hold.

1. a ≤ cl .a

2. cl .a = cl(cl .a)

3. a ≤ b ⇒ cl.a ≤ cl .b

Lemma 3 cl(a ∨ b) ≥ cl .a ∨ cl .b.

Proof

cl(a ∨ b)

= { x ∨ x = x }

cl(a ∨ b) ∨ cl(a ∨ b)

≥ { a ∨ b ≥ a, monotonicity of cl , Lemma 2 }

cl .a ∨ cl .b �

A lattice has a unit element, 1, if a ∧ 1 = a for all a ∈ L.
A lattice has a zero element, 0, if a ∨ 0 = a for all a ∈ L.
Suppose we have a lattice with a 0 and a 1, then b is a
complement of a iff b ∧ a = 0 and b ∨ a = 1. Note that b

need not be unique. The set of complements of a is denoted
cmp.a. A complemented lattice is one in which every element
has a complement.

A lattice is modular if a ≥ c ⇒ a∧(b∨c) = (a∧b)∨(a∧c).

For the remainder of this section, unless we say otherwise, we
assume that we are working with 〈L,∧,∨, 0, 1〉, a modular
complemented lattice. Notice that a Boolean algebra is a
special case of a modular complemented lattice.

A cl -safety element is one where a = cl .a. Note that cl .a is
a safety element (as cl .a = cl(cl .a)).

A cl -liveness element is one where cl .a = 1.

Lemma 4 If b ∈ cmp(cl .a) then a ∨ b is a cl-liveness ele-
ment.

Proof

cl(a ∨ b)

≥ { Lemma 3 }

cl .a ∨ cl .b

≥ { cl .x ≥ x }

cl .a ∨ b

= { b ∈ cmp(cl .a) }

1 �

Theorem 2 If cl is a lattice closures, then every element
in L is the meet of a cl-safety and cl-liveness element.

Proof By Theorem 3 where cl2 , cl1 = cl . �

Theorem 2 is a simple corollary of Theorem 3, which will be
useful when we consider branching time, and is presented
next. The significance of Theorem 2 is that it can be used
to obtain the Alpern Schneider results. To see why, note
that 〈P(Σω),∩,∪, ∅, Σω,¬〉 is a Boolean algebra and lcl is a
lattice-closure operator. Similarly the set of languages defin-
able by Büchi automata is closed under union, intersection,

4

1

0

cb

a

Figure 1: Why we need modularity in Theorem 3.

The above Hasse diagram depicts a lattice. Circles

denote elements and x ≤ y if there is an upward path

from x to y. The lattice depicted is not modular:

b ≥ a but b ∧ (c ∨ a) is b whereas (b ∧ c) ∨ (b ∧ a) is a.

Consider the closure cl , where cl .a = b and cl is the

identity otherwise. Element a cannot be expressed

as the conjunction of a cl-safety element and a cl-
liveness element, as per Lemma 6.

and complementation so it too defines a Boolean algebra and
we have shown that the closure operator on Büchi automata
corresponds to lcl , so it too is a lattice-closure operator. Re-
call, that neither the original Alpern and Schneider topolog-
ical characterization nor Gumm’s characterization applies to
the Büchi automata case. In fact, the main results of the
paper by Alpern and Schneider on safety and liveness for
Büchi automata follow directly from our results and basic
closure properties of Büchi automata.

Theorem 3 Suppose cl1 and cl2 are lattice closures such
that for all x ∈ L, cl1 .x ≤ cl2 .x. Then any element in L is
the meet of a cl1 -safety and a cl2 -liveness element.

Proof Suppose a ∈ L and b ∈ cmp(cl2 .a).

cl1 .a ∧ (a ∨ b)

= { cl1 .a ≥ a, Modularity }

(cl1 .a ∧ a) ∨ (cl1 .a ∧ b)

= { a ≤ cl1 .a }

a ∨ (cl1 .a ∧ b)

= { Lemma 5 (a, b, c← cl1 .a, cl2 .a, b) and x ∨ 0 = x }

a �

Lemma 5 c ∈ cmp.b ∧ a ≤ b ⇒ a ∧ c = 0

Proof

a ∧ c

≤ { a ≤ b, Lemma 2 }

b ∧ c

= { c ∈ cmp.b }

0 �

We end this section by showing why modularity is needed.
Consider the Hasse diagram in Figure 1. It corresponds to

a lattice —where circles denote elements of the lattice and
x ≤ y if there is an upward path from x to y— that is not
modular. Consider the closure cl , where cl .a = b and cl is
the identity otherwise.

Lemma 6 Element a of the (non-modular) lattice depicted
in Figure 1 cannot be expressed as the conjunction of a cl-
safety element and a cl-liveness element, where cl .a = b and
cl is the identity otherwise.

Proof The only liveness element is 1, but since x ∧ 1 = x,
x ∧ 1 = a iff x = a and a is not a safety element. �

4. BRANCHING TIME FRAMEWORK
4.1 Preliminaries
For a relation R, we write R|S for R left-restricted to the
set S, i.e., R|S = {〈a, b〉 | (〈a, b〉 ∈ R) ∧ (a ∈ S)}. [i..j]
denotes the set {k ∈

�
| i ≤ k ≤ j}. A set U ⊆ S∞ is

prefix-closed iff for all u ∈ U and for all t � u, t ∈ U .

An unlabeled tree is a prefix-closed subset of
� ∗. A tree w is

a pair 〈W, w〉 where W is an unlabeled tree and w : W→ Σ.
A tree 〈W, w〉 is total if W 6= ∅ and for all σ ∈W, there exists
ρ ∈W such that σ ≺ ρ. A tree 〈W, w〉 is finite-depth if there
exists n ∈

�
such that for all σ ∈W, |σ| ≤ n. By Atot, Ant,

and Af we denote the set of total, non-total, and finite-depth
trees, respectively. The set of trees is denoted by Aall; note
Aall = Atot ∪ Ant and Af ⊂ Ant. Let t = 〈W, w〉 be a tree.
A p ⊆W is a path in t iff p is a totally ordered (by �), prefix-
closed subset of W. Given a tree 〈W, w〉 and a node σ ∈ W

we define the path σ = {σ′ ∈W | σ′ � σ}. We extend w to
paths: given path p = p0p1 · · · , w(p) = (w.p0)(w.p1) · · · .

We now define what it means to concatenate trees and use
this notion to define what it means for one tree to be a
prefix of another. The closure, safety elements, and liveness
elements can then be defined as in the linear time case.

4.2 Safety and Liveness
Given trees w and x, we define a preliminary notion of tree
concatenation, denoted w · x.

Definition 1 Let w = 〈W, w〉 and x = 〈X, x〉 be trees.
w · x = 〈W ∪ X, w ∪ (x|X\W)〉.

Note that w ·x is a tree. The above notion of concatenation
is not what we need. The problem is that it allows one
to extend w at non-leaf nodes. To remedy this, we define
an appropriate notion of concatenation after we define the
notion of a leaf.

Definition 2 Let w = 〈W, w〉 be a tree. leaf (z, w) ≡
z ∈W ∧ ¬〈∃y ∈W :: z ≺ y〉.

Given trees w and x, we define the notion of tree concate-
nation, denoted wx, as follows.

Definition 3 Let w = 〈W, w〉 and x = 〈X, x〉 be trees. Let
X

′ = {y ∈ X | y ∈ W ∨ 〈∃z : leaf (z, w) : z ≺ y〉}. Let
x′ = 〈X′, x|X′〉. wx = w · x′.

5

Clearly, wx is a tree; the proof amounts to showing that x′

is a tree. We now define when one tree is a prefix of another.

Definition 4 x v y ≡ 〈∃z :: xz = y〉

In [14], we show that v is a partial order and that if x v y

then for all w, wx v wy. P(Atot) is the set of branching
time properties. Note that 〈P(Atot), Atot, ∅,∪,∩,¬〉 and
〈P(Aall), Aall, ∅,∪,∩,¬〉 are Boolean algebras. We define
two closure operators on P(Atot), the non-total and finite-
depth closures, as follows.

Definition 5 ncl .p = { y ∈ Atot | 〈∀x ∈ Ant : x v y :
〈∃z ∈ p :: x v z〉〉 }

Definition 6 fcl .p = { y ∈ Atot | 〈∀x ∈ Af : x v y : 〈∃z ∈
p :: x v z〉〉 }

The proofs that ncl , fcl are lattice-closures and that ncl .p ⊆
fcl .p follow directly from results in [14].

Since we have two types of closures, we have two types of
safety properties: existentially safe (ES) and universally safe
(US). The intuition is that the existentially safe properties
guarantee at least one computation along which nothing bad
happens. The universally safe properties guarantee that
nothing bad happens during any computation.

Definition 7 (Existentially Safe) p ∈ ES ≡ p = ncl .p

Definition 8 (Universally Safe) p ∈ US ≡ p = fcl .p

It turns out that fcl defines a topology, as fcl .p ∪ fcl .q =
fcl .(p ∪ q). However, ncl .(p ∪ q) ⊆ ncl .p ∪ ncl .q is not a
theorem, thus ncl does not define a topology.

Definition 9 (Existentially Live) p ∈ EL ≡ ncl .p = Atot

Definition 10 (Universally Live) p ∈ UL ≡ fcl .p = Atot

Theorem 4 Every branching time property is the intersec-
tion of:

1. An existentially safe and an existentially live property;

2. A universally safe and a universally live property; and

3. An existentially safe and a universally live property.

Proof By Theorem 3. �

The above theorem shows that three of the four obvious
ways of decomposing a property into the meet of a safety
and liveness property hold. What about the fourth? The
following theorem allows us to show that it does not hold.

Theorem 5 Suppose cl1 and cl2 are closure operators such
that cl2 .a = 1 and cl1 .a < 1. Then there do not exist s, l

such that cl2 .s = s, cl1 .l = 1 and a = s ∧ l.

Proof Suppose cl2 .s = s, cl1 .l = 1, and a = s ∧ l. Then:

a = s ∧ l

⇒ { Def. of ≤ }

a ≤ s

⇒ { cl2 is a lattice-closure }

cl2 .a ≤ cl2 .s

⇒ { cl2 .a = 1 }

cl2 .s = 1

⇒ { s = cl2 .s }

s = 1

⇒ { a = s ∧ l }

a = l

⇒ { cl1 .l = 1 }

cl1 .a = 1

⇒ { cl1 .a < 1 }

false �

Since the set of trees satisfying the CTL formula AFp (along
all paths, eventually p) satisfies the preconditions on the
previous theorem, we have shown that not every property
can be expressed as the intersection of a universally safe and
an existentially live property.

Our decomposition of a property into a safety property and
a liveness property is extreme in the following sense. (See
[19] for a linear-time version of the extremal theorems.)

Theorem 6 Suppose cl1 and cl2 are lattice closures such
that for all x ∈ L, cl1 .x ≤ cl2 .x. If s = cl1 .s or s = cl2 .s

and a = s ∧ z, then cl1 .a ≤ s.

Proof

a = s ∧ z

⇒ { Def. of ≤ }

a ≤ s

⇒ { cl1 is a lattice closure }

cl1 .a ≤ cl1 .s

⇒ { cl1 .s ≤ cl2 .s, s = cl1 .s or s = cl2 .s }

cl1 .a ≤ s �

Note that setting cl1 = cl2 gives us a version of the theorem
applicable to cases where there is only one lattice closure
operator, e.g., in the linear time case, we set cl1 = cl2 = lcl .

Theorem 6 says that any decomposition of a into a cl1 -
safety or cl2 -safety element and some other element (not
necessarily a liveness element) requires that the safety ele-
ment be weaker (i.e., above or ≥) than cl1 .a. Thus, cl1 .a

6

is the strongest safety element that can be used in the de-
composition of a. If we are thinking about specifications,
this means that cl1 .a does as much of the specifying as pos-
sible and that x does not specify any safety property not
already captured by cl1 .a. Such properties are called “ma-
chine closed” [1]. In the context of automated verification
it is often the case that safety properties are easier to check
than liveness properties; the above theorem identifies the
strongest safety property implied by a, which allows us to
make the most of a checker for safety properties.

One may wonder if the liveness property in the decomposi-
tion above is also extreme. It is, if our lattice is also dis-
tributive, i.e., it satisfies a ∧ (b ∨ c) = (a ∧ b) ∨ (a ∧ c).
(The difference is that we do not require a ≥ c, as we did
with modular lattices.) One can show that ∧ distributes
over ∨ —as in our definition of a distributive lattice— iff ∨
distributes over ∧.

Theorem 7 Suppose that 〈L,∧,∨, 0, 1〉, is a distributive lat-
tice and that cl1 and cl2 are lattice closures such that for
all x ∈ L, cl1 .x ≤ cl2 .x. If s = cl1 .s or s = cl2 .s and
a = s ∧ z, then z ≤ a ∨ b, where b ∈ cmp(cl1 .a).

Proof

a ∨ b

= { Def. of a }

(s ∧ z) ∨ b

≥ { cl1 .a ≤ s by Theorem 6 }

(cl1 .a ∧ z) ∨ b

= { Distributivity }

(cl1 .a ∨ b) ∧ (z ∨ b)

= { b ∈ cmp(cl1 .a) }

z ∨ b

≥ { Def. of ≤ }

z �

As was the case with Theorem 6, setting cl1 = cl2 gives
us a version of the theorem applicable to cases where there
is only one lattice closure operator, e.g., in the linear time
case, we set cl1 = cl2 = lcl .

Theorem 7 says that any decomposition of a into a cl1 -
safety or cl2 -safety element and some other element z (not
necessarily a liveness element) requires that z be stronger
(i.e., below or ≤) than a ∨ b, where b ∈ cmp(cl1 .a). Thus,
a∨ b is the weakest element that can be used in the decom-
position of a. If we are thinking about specifications, this
means that a ∨ b does as little of the specifying as possi-
ble. In the context of automated verification it is often the
case that liveness properties are more difficult to check than
safety properties; the above theorem identifies the weak-
est liveness property implied by a, which allows us to limit
reasoning about liveness properties to the greatest extent
possible.

a

s, cl .a zb

1

Figure 2: Why we need distributivity in Theorem 7.

The above Hasse diagram depicts a lattice. Circles

denote elements and x ≤ y if there is an upward path

from x to y. The lattice depicted is modular, but not

distributive: s∧ (b∨ z) is s whereas (s∧ b)∨ (s∧ z) is a.

Consider any lattice closure cl that maps a to s. We

have that s is a safety element, a = s∧z, b ∈ cmp(cl .a),
but z ≤ a ∨ b does not hold.

Theorem 7 does not hold for modular lattices. The lattice
depicted in Figure 2 is modular, but not distributive. Con-
sider any lattice closure cl that maps a to s. We have that
s is a safety element, a = s∧ z, b ∈ cmp(cl .a), but z ≤ a∨ b

does not hold.

In a distributive lattice, complements are unique, thus one
can replace b in Theorem 7 with ¬(cl1 .a).

An important consequence of the above theorems for the
branching time framework is the following theorem.

Theorem 8 If (q ∈ ES ∨ q ∈ US) and p = (q ∩ r), then
ncl .p ⊆ q and r ⊆ (p ∪ ¬ncl .p).

Proof By theorems 6 and 7. �

4.3 Examples
We now return to Martin Rem’s example properties given in
Section 2.3. Since we are now examining the branching time
framework, we will express them using the branching time
logic CTL∗. When translating the examples to properties
over trees, it is sometimes the case that there is more than
one reasonable translation. For example, we can translate p4
into both q4a and q4b; neither of these translations captures
the notion that there are only a finite number of a’s in a
tree but rather that there are a finite number of a’s on some
(all) paths in the tree.

q0: false false (corresponds to ∅)
q1: a a

q2: ¬a ¬a

q3a: a ∧ F ¬a A(a ∧ F ¬a) ≡ a ∧ AF¬a

q3b: E(a ∧ F ¬a) ≡ a ∧ EF¬a

q4a: FG ¬a A(FG ¬a)
q4b: E(FG ¬a)
q5a: GF a A(GF a)
q5b: E(GF a)
q6: true true (corresponds to Atot).

For those not familiar with CTL∗, here is an informal trans-
lation of the above CTL∗ sentences into English. q1 is true

7

of any tree whose root is labeled with a; similarly q2 is true
of any tree whose root is not labeled with a. q3a is true of
the trees whose root is labeled with a and along each path
there is a node labeled with ¬a. q3b is true of the trees whose
root is labeled with a and along some path there is a node
labeled with ¬a. q4a is true of the trees where along each
path, eventually all nodes are labeled with ¬a. q4b is true
of the trees where along some path, eventually all nodes are
labeled with ¬a. q5a is true of the trees where along each
path, infinitely many nodes are labeled with a. q5b is true
of the trees where along some path, infinitely many nodes
are labeled with a.

It is not difficult to show that q0, q1, q2, and q6 are univer-
sally safe (and hence existentially safe).

fcl .q3a = q1, as before, but ncl .q3a 6= q1 (consider a tree
that has at least two paths such that along one of the paths
a always holds; this tree is not in ncl .q3a). ncl .q3a 6= q3a

(trees can be sequences, so {ay | y ∈ Σω} ⊆ ncl .q3a).
ncl .q3b = q1 and fcl .q3b = q1.

fcl .q4a = Atot, as before, but ncl .q4a 6= Atot (consider a
tree that has at least two paths such that along one of the
paths a always holds; this tree is not in ncl .q4a). ncl .q4a 6=
q4a (trees can be sequences, so {y | y ∈ Σω} ⊆ ncl .q4a).
ncl .q4b = Atot, so fcl .q4b = Atot.

fcl .q5a = Atot, as before, but ncl .q5a 6= Atot (consider a tree
that has at least two paths such that along one of the paths
¬a always holds; this tree is not in ncl .q5a). ncl .q5a 6=
q5a (trees can be sequences, so {y | y ∈ Σω} ⊆ ncl .q5a).
ncl .q5b = Atot, so fcl .q5b = Atot.

4.4 Rabin Tree Automata
Let k ∈

�
. A tree 〈W, w〉 is a k-branching tree iff for all σ ∈

W there exists exactly k unique elements of
�

, a0, . . . , ak−1,
such that σa0, . . . , σak−1 ∈ W. In what follows we consider
sets of trees which are k-branching. By Ak,tot and Ak,f

we denote, respectively, the set of k-branching trees and
the set of finite trees whose non-leaf nodes have exactly k

successors. We carry over the definitions of ncl and fcl from
the previous sections, restricted now to k-branching trees
over finite alphabets.

A Rabin tree automaton B = (Σ, Q, q0, δ, Φ) on k-ary infinite
trees is defined as follows: Σ is a finite alphabet, Q is a finite
set of states, q0 ∈ Q is the start state, δ : Q × Σ → P(Qk)
is the transition relation, and Φ is the accepting condition.

Let t = 〈W, w〉 ∈ Ak,tot. A run of B on t is a Q labeled tree

r = 〈W, ρ〉 ∈ A
k,tot
Q such that ρ.λ = q0 and for all σ ∈ W

and successors σa0, . . . , σak−1 ∈ W, (ρ.σa0, . . . , ρ.σak−1) ∈
δ(ρ.σ, w.σ). Run r is accepting iff for all infinite paths p in
W, ρ(p) |= Φ. L(B) = {t ∈ Ak,tot | there is an accepting run
of B on t} is the language of B.

The accepting condition, Φ, is given by specifying pairs of
sets (greeni, red i) ∈ (P(Q))2 for i ∈ [0..m], for some m. Φ
holds on a path if for some i, some green state is visited
infinitely often and all red states are visited finitely often,
i.e., Φ = ∨i∈[1..m][(∨g∈greeni

GFg) ∧ (∧r∈redi
FG¬r)].

For notational convenience, given a Rabin automaton B =
(Σ, Q, q0, δ, Φ) we will refer to B(q), q ∈ Q, as the automaton
given by (Σ, Q, q, δ, Φ).

Given automaton B = (Σ, Q, q0, δ, Φ) such that L.B 6= ∅,
note that L.B = L.(Σ, Q′, q0, δ

′, Φ) where δ′ is δ restricted
to Q′ and Q′ = {q ∈ Q | L(B(q)) 6= ∅}.

We define the finite depth closure, rfcl , of an automaton
as follows: if L.B = ∅, rfcl .B = B; otherwise, rfcl .B =
(Σ, Q′, q0, δ

′, Φ′) where Φ′ = ∨q∈Q′GFq is a condition that
holds along all paths and is generated from {(Q′, ∅)}.

In [14] we show that L(rfcl .B) = fcl .L(B). Similarly, one
can define the non-total closure of a Rabin automaton. Since
languages definable by Rabin automata are (effectively) closed
under complementation, intersection, and union [22], they
form a Boolean algebra and we can use Theorem 3 to ob-
tain the following result.

Theorem 9 For any Rabin tree automaton, B, there exist
effectively derivable Rabin automata Bsafe and Blive such that
the language of B is the intersection of the languages of Bsafe

and Blive . As above, Bsafe and Blive can be chosen so that
their languages are existentially safe and existentially live,
universally safe and universally live, or existentially safe and
universally live.

5. CONCLUSIONS
We gave a lattice-theoretic characterization of safety and
liveness that is more general and simpler than previous char-
acterizations and we carefully analyzed the conditions re-
quired to prove the main results in this paper. This al-
lowed us to give a uniform treatment of previous results on
safety and liveness, including the results for the linear time
and branching time frameworks and for ω-regular string and
tree languages. Our results allowed us to drastically simplify
previous proofs, e.g., we showed that the characterization of
safety and liveness for Büchi automata and the decompo-
sition theorem, the main results in [4], follow directly from
our results.

6. REFERENCES
[1] M. Abadi and L. Lamport. The existence of

refinement mappings. Theoretical Computer Science,
82(2):253–284, 1991.

[2] P. A. Abdulla, K. Cerans, B. Jonsson, and Y.-K. Tsay.
Algorithmic analysis of programs with well
quasi-ordered domains. Information and Computation,
160(1–2):109–127, 2000.

[3] B. Alpern and F. B. Schneider. Defining liveness.
Information Processing Letters, 21(4):181–185, Oct.
1985.

[4] B. Alpern and F. B. Schneider. Recognizing safety and
liveness. Distributed Computing, 2(3):117–126, 1987.

[5] E. M. Clarke and E. A. Emerson. Synthesis of
synchronization skeletons for branching time temporal
logic. In Logic of Programs: Workshop, volume 131 of
LNCS, pages 52–71. Springer-Verlag, May 1981.

8

[6] E. A. Emerson. Temporal and modal logic. In van
Leeuwen [23], pages 995–1072.

[7] E. A. Emerson and J. Y. Halpern. “Sometimes” and
“not never” revisited: on branching versus linear time
temporal logic. JACM, 33(1):151–178, Jan. 1986.

[8] H. P. Gumm. Another glance at the Alpern-Schneider
characterization of safety and liveness in concurrent
executions. Information Processing Letters,
47(6):291–294, Oct. 1993.

[9] D. Harel and A. Pnueli. On the development of
reactive systems. In K. R. Apt, editor, Logics and
Models of Concurrent Systems, volume F-13 of NATO
ASI Series, pages 477–498. Springer-Verlag, 1985.

[10] E. Kindler. Safety and liveness properties: A survey.
EATCS-Bulletin, 53:268–272, June 1994.

[11] D. Kozen. Results on the propositional Mu-Calculus.
Theoretical Computer Science, pages 334–354,
December 1983.

[12] O. Kupferman and M. Y. Vardi. Model checking of
safety properties. In N. Halbwachs and D. Peled,
editors, Computer-Aided Verification–CAV ’99,
volume 1633 of LNCS, pages 172–183.
Springer-Verlag, 1999.

[13] L. Lamport. Proving the correctness of multiprocess
programs. IEEE Transactions on Software
Engineering SE-3, 2:125–143, Mar. 1977.

[14] P. Manolios and R. Trefler. Safety and liveness in
branching time. In Sixteenth Annual IEEE Symposium
on Logic in Computer Science (LICS), pages 366–374.
IEEE Computer Society, 2001.

[15] R. Milner. Communication and Concurrency.
Prentice-Hall, 1990.

[16] S. S. Owicki and L. Lamport. Proving liveness
properties of concurrent programs. ACM Transactions
on Programming Languages and Systems (TOPLAS),
4(3):455–495, 1982.

[17] A. Pnueli. The temporal logic of programs. In 18th
Annual Symposium on Foundations of Computer
Science, pages 46–57, Providence, Rhode Island, 1977.
IEEE.

[18] J. P. Queille and J. Sifakis. Specification and
verification of concurrent systems in CESAR. In Proc.
of the 5th International Symposium on Programming,
volume 137 of LNCS, 1982.

[19] M. Rem. A personal perspective of the
Alpern-Schneider characterization of safety and
liveness. In W. H. J. Feijen, editor, Beauty is Our
Business, pages 365–372. Springer-Verlag, 1990.

[20] F. B. Schneider. Enforceable security policies. ACM
Transactions on Information and System Security
(TISSEC), 3(1):30–50, 2000.

[21] A. P. Sistla. Safety, liveness and fairness in temporal
logic. Formal Aspects of Computing, 6:495–511, 1994.

[22] W. Thomas. Automata on infinite objects. In van
Leeuwen [23], pages 135–192.

[23] J. van Leeuwen, editor. Handbook of Theoretical
Computer Science: Volume B: Formal Models and
Semantics. Elsevier, Amsterdam, 1990.

9

