
Efficient Implementation of a BDD Pack.age

Karl S. Brace’ Richard L. Rudell
Dept of ECE Syinopsys, Inc.

Carnegie Mellon 1098 Alta Avenue
Pittsburgh, PA 152 13 Mountain View, CA 94043

Randal E. Bryant*
School of Computer Science

Carnegie Mellon
Pittsburgh, PA 152 13

Abstract

Efficient manipulation of Boolean functions is an important compo-
nent of many computer-aided design tasks. This paper describes a
package for manipulating Boolean functions based on the reduced,
ordered, binary decision diagram (ROBDD) representation. The
package is based on an efficient implementation of the if-then-else
(ITE) operator. A hash table is used to maintain a strong carwni-
cal form in the ROBDD, and memory use is improved by merging
the hash table and the ROBDD into a hybrid data structure. A
memory funcfion for the recursive ITE algorithm is implemented
using a hash-based cache to decrease memory use. Memory
function efficiency is improved by using rules that detect. when
equivalent functions are computed. The usefulness of the package
is enhanced by an automatic and low-cost scheme for rec:ycling
memory. Experimental results are given to demonstrate why var-
ious implementation trade-offs were made. These results indicate
that the package described here is significantly faster and more
memory-efficient than other ROBDD implementations described in
the literature.

1 Introduction

The efficient representation and manipulation of Boolean functions
is important for many algorithms in a wide variety of applications.
In particular, many problems in computer-aided design for digital
circuits (CAD) can be expressed as a sequence of operations
performed over a set of Boolean functions. Some exampIes from
CAD are combinational logic verification [l, 21, sequential-machine
equivalence [3]. logic optimization of combinational circuits [4].
test pattern generation [5], timing verification in the presence of
false paths [6], and symbolic simulation [7].

Hence it is desirable to develop a general-purpose software
package for manipulating Boolean functions which allows variables
to be created, and allows standard Boolean operations such as AND,

OR, and NOT to be performed on functions. The package should
also allow a function to be tested for tautology - i.e., to determine
whether the function evaluates to I for all inputs.

The problem with developing such apackagels that the tautology
problem is co-NP complete [8]. This implies that all known
solutions require time which grows exponentially with the number
of variables in the worst case. However, by developing clever
representations and efficient manipulation algorithms, it is often
possible to avoid an exponential computation.

Many different representations have been proposed for manipu-
lating Boolean functions and each has a corresponding algorithm
to test for tautology. However, many of the functions of interest

*This research partially funded by Semiconductor Research Corporation
contract number 90-DC-068.

in CAD have an exponential size in the sum-of-:products represen-
tation [9], and checking tautology in a general Boolean network
appears to be intractable [lo], making these representations unac-
ceptable for a general package.

The representation we have found most useful for manipulating
Boolean functions is the reduced, ordered, binary-decision diagram
(ROBDD) [Il. 12. 131. The ROBDD is a canorlical fOm, so the

tautology test is a constant-time comparison against the unique
representation of the function 1. While the size of the ROBDD can

be exponential in the worst case, ROBDD's remain small for many
of the functions we are interested in.

We are aware of several computer implementations of ROBDD's,
but few have been put forward as a reusable package, and fewer still
have had their performance measured and compared. Our primary
goal was to develop a generic package interfac:e that would hide
the details of the package implementation, yet still be efficient in
computer run-time and memory use. We also wanted to understand
the various trade-offs possible in an ROBDD package to tailor such
a package for our applications in CAD.

2 Programming Techniques
A hash table associates a value with a key. A hashfunction applied
to the key selects which of N linked lists the key,value pair is stored.
The loadfactor of a hash table is defined as cx =: n/N, where n is
the number of keys stored in the table.

A memory function for the function F is a table of values
(z, F(r)) that the function has already computed. If F is called
with argument 2 again, F(z) is returned without any computation.

A hash-based cache is a hash table where a collision chain is
not used to resolve collisions. Instead, at insert time, any existing
element at the particular array position is discarded and replaced
with the new entry. At lookup time, if the element does not match
the stored key, a cache miss occurs and no element is returned.

A strong canonical form is a form of preconditioning which
reduces the complexity of an equivalence test between elements in
a set. A unique id is assigned to each unique element in the set, so
an equivalence test is a simple scalar test between the unique id’s
of each element.

Garbage collection is a class of techniques to periodically free
unused memory. It is useful when references to the structures being
freed prevent incremental freeing. The cost of searching for these
references is amortized over many free operations.

3 BDD Overview
3.1 Basic Definitions

Basic definitions for binary decision diagrams (also known as
function graphs) are given in [13]. We review some of these
definitions here for reference.

Paper 3.1

40

27th ACM/IEEE Design Automation Conference@

0 1990 IEEE 0738-100X/90/0006/0040 $1 .OO

A binary decision diagram (BDD) is a directed acyclic graph
(DAG). The graph has two sink nodes labeled 0 and 1 representing
the Boolean functions 0 and 1. Each non-sink node is labeled with
a Boolean variable v and has two out-edges labeled 1 (or then) and
0 (or else). Each non-sink node represents the Boolean function
corresponding to its 1 edge if v = 1. or the Boolean function
corresponding to its 0 edge if v = 0.

An ordered binary &&ion diagram (OBDD) is a BDD with the
constraint that the input variables are ordered and every source to
sink path in the OBDD visits the input variables in ascending order.

A reduced ordered binary decision diagram (ROBDD) is an OBDD
where each node represents a distinct logic function.

Bryant [13] was the first to prove that the ROBDD is well-defined.
Bryant also showed the ROBDD is a canonical form for a logic
function; that is, two functions are equivalent if, and only if, the
ROBDD'S for each function are isomorphic.

It is well known that the size of the ROBDD for a given function
depends on the variable order chosen for the function. This paper is
not concerned with the variable ordering problem. In practice, we
have found that a simple topological based ordering heuristic, such
as proposed by Malik et al. [l], is sufficient for many applications
in CAD.

4 Implementation
4.1 Notation

The sink nodes of the ROBDD are written as 1 and 0. A variable
is denoted by a lowercase letter, such as v. The variables in the
ROBDD are totally ordered. We say that v is smaller than w (v < w)
if v comes before w in the variable order (higher up in the ROBDD).

At each node F there is a variable v and v is called the fop
variable of F. The top variable of a set of formulas is the smallest
of the top variables of those formulas.

Each node in the ROBDD represents a Boolean function, and is
written using a capital letter, such as F, and can be denoted by
the triple (v, G, H), where v is the top variable of F, G is the
node connected to the I (or then) edge of F, and H is the node
connected to the 0 (or else) edge of F. A node in the ROBDD which
represents a function the user is interested in is called a formula.
Other nodes, which are needed to build a user’s formula, are called
internal nodes.

1 F 1 is the number of nodes below F in the ROBDD.

4.2 ITE Operator

The If-Then-Else or ITE operator forms the core of the package.
ITE is a Boolean function defined for three inputs F, G, H which
computes: If F then G else H. This is equivalent to:

ite(F,G,W)= F.G+F.H.

It is well known that the ITE operation can be used to implement
all two-variable Boolean operations as shown in Figure 1. Aho,
because ITI% is the logical function performed at each node of the
ROBDD, it is an efficient building block for many other operations
on the ROBDD. The programming language function for the ITE
operator will be written as tie.

4.3 Unique-Table

A hash table imposes a strong canonical form on the nodes in the
ROBDD. so that each node in the ROBDD represents a unique logic
function. Hence, this hash table is called the unique-table.

Table

oool
0010
0011
0100
0101
0110
0111
loo0
1001
1010
1011
1100
1101
1110
1111

Name Expression
0 0
AND(F,G) F-G
F>G F-E
F F
F<G F.G
G G
XOR(F,G) F@G
OR(F,G) F+G
NOR(F,G) F+G
XNOR(F,G) F@G
NOW3 F
F>G F+??

NO-W) P
FIG P+G
NAND(F,G) F-G
1 1

The unique-table maps a triple (v, G, H) to an ROBDD node
F = (v,G,H). Each node in the ROBDD has an entry in the
unique-table. Before a new node is added to the ROBDD, a lookup
in the unique-table determines if a node for that function already
exists. If so, the existing node is used. Otherwise, the new node
is added to the ROBDD and a new unique-table entry is made. By
assumption, when we create a new node F, the nodes G and H
will already obey the strong canonical form. Hence, the function
F exists in the ROBDD if, and only if, the triple (v, G, H) is already
in the unique-table, thus maintaining the strong canonical form.

The unique table allows a single multi-rooted DAG to represent
all of the user’s formulae simultaneously.

4.4 Recursive Formulation of ITE

Shannon’s decomposition theorem states that

where F, and Fc are F evaluated at v = 1 and v = 0 respectively.
Let F = (2u, T, E) and assume v < zu. Finding the cofactors of F
with respect to v is trivial: F. = F (if v < v) or T (if v = w),
andFT=F(ifv<zo)orE(ifv=zo).

The following recursive formulation is the key to computing
ite(F, G, H) for functions F, G, H represented in ROBDD form.
Let Z = ite(F, G, H) and let v be the top variable of F, G, H.
Then,

z = v.z.+5*z=
= v.(F.G+F.H).++(F.G+F~)~
= v.(F,.G. +~,.H.)+~.(F~.G,+~~.H~)
= ite(v,ite(F., G.,H,),ite(Fc, Gv,H+-))
= (v,ite(F+,G,,H,),ite(F~,G;;,HT;))

The terminal cases for this recursion are: ite(1, F, G) =
ite(0, G, F) = ite(F, 1,O) = F.

We note that this formulation is valid for any Boolean function
of any number of variables. However, we use the ITE function for
the reasons mentioned earlier.

4.5 Memory Function for ITE

We use a memory function to improve the performance of ife.
Bryant mentioned the use of a memory function for operations

Paper 3.1

41

Equivalent form
0
ite(F, G, 0)
ite(F,E,O)
F
ite(F,O, G)
G
ite(F,c,G)
ite(F,l,G)
ite(F,O,c)
ite(F,G,E)
ite(G,O, 1)
ite(F, 1, E)
ite(F,O, 1)
ite(F, G, 1)
ite(F,E, 1)
1

Figure 1: All two variable functions described using lTE.

WF, G, HI{
if (terminal case) {

return result;
} else if (computed-table has entry (F, G, H}) (

return result;
Ieke{

let w be the top variable of {F, G, H};
T = ite(F.,G., H.);
E = ite(F=, G=, H=);
if T equals E return T,
R = f ind-ormddvnique-table(v, T, E);
insert-computed-table((F, G, H), R);
return R,

I
1

Figure 2: The ire algorithm.

on an ROBDD [13], and this idea has been used in other imple-
mentations [14. 151. We call the memory function for ite the
computed-table. The computed-table maps three nodes F, G, H to
the result node ite(F, G, H) once this result has been computed.
Assume for now that the computed-table is implemented using a
hash table.

4.6 ITE Algorithm

Figure 2 shows the outline of the complete ite algorithm. With
the assumption of constant time lookup and insert in the computed
and unique-tables, all operations in ite take constant time, Observe
that ire can be called at most once for each combination of nodes
in F, G, H, i.e., O(lFI -]G] - IHI) times. So the time complexity is
O(l FI -]Gl - I HI). In practice, the typical performance is closer to
the size of the resulting function.

An example of ite is shown in Figure 3.

5 ROBDD Extensions
5.1 Complement Edges

The first extension we consider is introducing complement edges
into the ROBDD. Akers [16] describes using complement edges
for hand-generated BDD'S. Both l&plus [15] and Madre [171
formulated sets of rules to guarantee canonical ROBDD's using
complement edges. Our implementation is similar to these.

Consider, for example, the ROBDD nodes for G and z which
are similar except that their sink nodes 0 and 1 are interchanged.
This similarity can be exploited by using complemenf edges. A
complement edge is an ordinary edge with an extra bit (complement
bit) set to indicate that the connected formula is to be interpreted
as the complement of the ordinary formula. Therefore zf could
be represented by a complement edge to the node for G. saving
intermediate nodes.

In our notation, when we say node F (or formula F), we
are referring to a node referenced through either an ordinary or
complement edge and 7 is the same node referenced through the
other kind of edge. Note that we only need one constant node. We
chose to keep 1, allowing the function 0 to be represented by a
complement edge to 1.

To maintain a canonical form, we must constrain where comple-
ment edges are used. A dot on an edge indicates it is a complement
edge. The following 4 pairs of functions are functionally equivalent:

I = ite(F, G, H)
= (a, ite(F,, G,, H,), ite(F=, Gr, Hz))
= (a,ite(l,C,H),ite(B,O, Ii))
= (0, c, (b, ite(Bb,Ob, Hb),ite(Bg,Oi;, Hg)))
= (a, C, (b, ite(l.,O, l),ite(O,O, D)))
= (a,C,(hO,D))

Figure 3: Example of ite()

The ROBDD must follow this rule: the then edge of every node
must be a regular edge. Thus, we always choose the left member
of each equivalent pair above. This guarantees a canonical form,
as no function-preserving change to an ROBDD which follows this
rule can yield a different ROBDD which also follows this rule.

Therefore G and G are represented by the same node, and
the complement operation and the identification of complement
functions takes constant time. Therefore we add another terminal
case to ire: ite(F,O, 1) = F. Complement edges are realized at
a negligible processing cost in ite. There is no added memory
overhead because we use the low bit of each node pointer as the
complement bi& although a separate bit could be used on a machine
where this is not allowed.

For the set of 12 examples presented in Section 6, we find that
the final DAG is 7% smaller when complement edges are used.
However, the total run-time needed to form the DAG for these
examples is decreased by almost a factor of 2. The large decrease
in run-time is mostly due to the ability of the ROBDD package to
support a constant-time complement operation.

5.2 Standard Triples

For the function and parameters ite(F1, Fz,&) there may exist
parameters GI, Gz, Gs suchthatite(Fr, F2, FJ) = ite(G1, Gz,G3)
but Fi # Gi for some i. We definean equivalencerelation on sets of
three functions Fl , F2, F3 based on the equivalence of the Boolean
function lTE(Fr , F2, F3). We would like to choose a standard
triple from each equivalence set where the result of the ite is stored.
Therefore, on any call to ite(F1, Fz, Fs), the standard arguments

GI, Gz, Gs are substituted first before any lookup or entries are
made in the computed-table. This improves the efficiency of the
computed-table by reducing the storage required in the computed-
table and eliminating some recomputation which would yield an
equivalent result.

Because of the strong canonical form and the use of complement
edges, it is possible to recognize when two functions are equal or
the complements of each other in constant time. Using only these
two queries, we can easily detect when equivalent two-variable
Boolean functions are computed. For example the following calls
to ite are all functionally equivalent to F + G:

ite(F, F, G) = ite(F, 1,G) = ite(G, 1, F) := ite(G,G, F).

We choose the standard triple from this set as follows.
following simplifications are applied to the arguments
where possible:

First, the
of the ite

ite(F,F,G) + ite(F,l,G)
ite(F, G, F) + ite(F, G, 0)
ite(F, G, F) =P ite(F, G, 1)
ite(F,F,G) + ite(F,O,G)

Paper 3.1

42

As stated previously checking F = G and F = ?f? are constant
time operations. Next, consider the following equivalent pairs:

ite(F, I, G) = ite(G, 1, F)
ite(F, G, 0) = ite(G, F, 0)
ite(F, G, 1)

--
= ite(G, F, 1)

ite(F,O,G) = ite(C,O,F)
ite(F,G,@ = ite(G,F,F)

To choose the unique element, for example, between ite(F, 1, G)
and ite(G, 1, F), the first argument of the i:e is given the formula
with the smallest top variable. In the case of a tie, the formulas are
ordered based on their unique id (in C, the address of the node).

At this point, the simplified arguments to tie are F,G,H.
Complement edges lead to the following equivalences:

-- ---
ite(F,G, H) = ite(B,H,G) = ite(F,G,H) = ite(F,H,G)

A unique triplet is chosen from these four forms according to
the rule that the first and second arguments to ite should not be
complement edges. Given arbitrary values for F, G, and H, this
condition is met by exactly one of the above forms. For the last two
cases, the computation will yield the complement of the function,
and then the function will be complemented before it is returned.

Note that these rules effectively detect equivalences according
to DeMorgan’s Laws. FOT example. suppose that A and B are both
regular edges, and we 6rst compute A + B. which will become -- --
ite(A, 1, B). If we later compute A . B as ite(A, B, 0). this will
become ite(A, I, B). The computed table will have the resulr.
which will only need to be complemented before being returned.
Likewise, we can dztect when redundant computation is performed,
for example F + F = ite(F,l,F) = ite(F,l, 1) = 1. Bryant’s
apply operation, which performs an arbitrary operation on two
formulae [13], does not recognize these equivalences.

The complete set of terminal cases for the recursion are:
ite(F, 1,O) = ite(l, F, G) = ite(0, G, F) = ite(G, F, F) = F
and ite(F,O, 1) = F.

5.3 The itexonstant Algorithm

The ife~onsfantalgorithm. outlined in Figure 4. is amodification of
ife which returns a result only if it is a constant function; otherwise,
it returns a failure value. ire~onstant is useful for testing logical
implication because F 5 G (i.e., F implies G) is the same as
itexonstati(F, G, 1) = 1. This can be done much more efficiently,
on average, than computing the result of the ife and checking for a
constant value because no intermediate nodes are constructed and
the routine exits as soon as the result is found to be nonconstant.

5.4 Garbage Collection

The implementation described here is the first to include automatic
garbage collection. Each node F has a reference count of the
number of other nodes that reference it plus the number of user
formulae that reference it. This count is maintained incrementally.
References from the unique-table or from computed-table entries
are not included. A node with areference count of 0 is called dead.

When a user formula is tieed, the reference count of the corre-
sponding node F = (v, G, H) is decremented. If the new reference
count for F is 0. then the reference counts of the nodes G and H are
recursively decremented. F cannot be freed at this time because
it may be referenced by computed-table entries. The memory
overhead of maintaining pointers from F to the elements of the
computed-table which point to it is excessive, so we choose to use
garbage collection instead.

itexomtant(F, G, H){
if (trivial case) (

return result (0. I or nonronstant);
) else if (computed-table has entry for (F,G,H)) {

return non-constant;
} else {

let v be the top variable of F, G, H;
T = ite_constant(F., G,, H.);
if (T # 1 and T # 0) return non-constant;
E = ite_constant(FF, Gf, Hr);
if (E # T) return nonxonstant;
insert_computed-table({F, G, H}, T);
return T;

-.

Figure 4: The ifexonstanf algorithm.

If a lookup in the computed-table returns a dead node, a reclaim
operation is performed. First, the reference count of the node is
incremented. If it was dead (which is always true at the top level),
the fhen and else nodes are recursively reclaimed. This brings the
dead node and any dead nodes under it back into the ROBDD.

Reference counting is used to keep an accurate count of the the
number of dead nodes in the DAG. The number of dead nodes
influences the memory management strategy. If the load factor in
the unique-table exceeds 4 after an insertion the following check
is made. If 10% of all nodes are dead, then garbage collection is
performed. Garbage collection consists of deleting all computed-
table entries that reference dead nodes and then freeing all dead
nodes. If there are not enough dead nodes, then the unique-table and
computed-table are both increased in size and all of the elements
are re-hashed into the larger tables. Garbage collection is done at
very low cost during this resize.

Memory overflow is handled using a similar technique. When
the memory usage for the unique-table and computed-table exceeds
a user-specified memory limit, and 10% of the nodes are dead,
a garbage collection is done to free enough memory to continue.
Otherwise the package gives up, automatically freeing intermediates
(T = ite(F.,G., H.) in Figure 2) on its way out of the tie and
returning the zero pointer to the user. It is up to the user to give up
OT free unneeded formulae and continue.

The reference count and variable index share a single word in
a node and only 8 bits are allocated for the reference count, so
salurafing increment and decrement operations are used. If the
count overflows, the node will never be freed. guaranteeing correct
operation of the package. In practice few nodes (other than the
constant node) hit a reference count as large as 255.

These techniques provide effective memory management at a
very low cost. For the set of 12 examples presented in Section 6.
on average only 3% of the run-time is spent in garbage collection
and resizing and 7% in free and reclaim operations.

5.5 Management of the Computed Table

Another modification we use is to implement the computed table as
a hash-basedcache. We call this the caching computed-table.

A caching computed-table takes advantage of a high locality of
reference. A computed-table entry is created for every non-trivial
recursive call to ire. but newer entries overwrite the older ones if
the hashing function is satisfactory. This decreases the frequency
of garbage collection which improves the run-time of the package.
The caching computed-table requires less memory because it is not

Paper 3.1

43

necessary to link the elements together in a collision chain. Also.
by controlling the ratio of the number of unique-table entries to the
number of caching computed-table entries, it is easy to control the
memory and run-time badeaff for the memory function.

The use of a caching computed-table introduces the possibility
of recalculating previous result-s and invalidates our previous time-
complexity analysis. In fats the worstcase complexity of the ife
operation is now exponential in the unlikely event that all keys hash
to the same value. Experimentally, however. we find that the gain
both in terms of average space and time is enough to wamnt the
risk of using the cache.

Note that the computed-table remains valid even across top-level
calls to tie. Therefore, we initialize the computed-table only once
when the ROBDD is created rather than at each top level call to ire.

For the 12 circuits presented in Section 6. the caching computed-
table requires 16% more recursive calls to tie than the hashing
computed-tabIe, but the run-time is increased by onIy 6%. The
caching computed-table causes computation to be repeated for
some nodes because of a miss in the computed-table; however, the
hashing computed-table requires more processing for the operations
of lookup and garbage collection. Because of the lower memory
overhead. we feel the caching computed-table is the best solution
for this application.

Another experiment was performed to measure the effect of
computed-table lookups which come from old data which happens
to be left in the table. Approximately 17% more ife recursive steps
are required if the computed-table is purged at each top-level call
to ite and the run-time is increased by 22%. Note that not purging
the cache also avoids the linear time operation of allocating and
deallocating the cache.

5.6 Merging the Unique-table and DAG

Instead of using separatedatashuctures for the unique-table and the
ROBDD DAG, we combine the unique-table and the ROBDD into a
single data structure. Each node now has an additional field which
is the collision chain link in the unique-table. Hence. seemingly
random elements of the ROBDD are linked together in the collision
chain which is required for fast lookup of a node in the ROBDD.
This leads to an improvement in memory usage as well as a small
decrease in the overhead for memory allocation.

To analyze the memory usage, we assume that the caching
computed-table and the merged-DAG unique-table use the same
number of bins. We find that a load factor of 4 for the unique-table
provides a reasonable trade-off between the time to find an entry
in the hash table and the memory overhead per en&y. When the
load factor is 4, the memory usage is only 22 bytes per node.’ This
comes from 4 words for each merged-DAG unique-table enby and
l/4 of a 4 word entry in the compute&table (on average per node).
The hash-table bin overhead adds an extra 2 bytes per entry (on
average). Note that this is the amortized cost per node for the entire
ROBDD package and not just the ROBDD itself. This memory usage
has been verified experimentally.

6 Experimental Results
6.1 Forming the BDD for Digital Circuits

The first data we present is the run-time and memory requirements
for converting the combinational portion of several large digital
circuits into the ROBDD representation. These circuits are standard

‘We assume a 32-bit machine.

Paper 3.1

44

Tircuit #in #outFixed Order 1 vtiable=l Size CPU
(nodes) (sec.)

c432 36 7 30,200 79.5
C499 41 32 49,786 85.0
C880 60 26 7,655 10.5
C13S5 41 32 39.858 80.4
Cl908 33 25 12,463 28.9
C2670 233 140 unable
c3540 50 22 2208.947 704.0
C5315 178 123 32,193 51.0
C6288 32 32 unable
C7552 207 108 unable
des 256 245 7,128 29.9
rot 135 107 7,405 8.0

Size CPU
(nodes) (sec.) --

18,153 60.4

unable
5,895 60.5

Table 1: ROBDD Results for large digital circuits.

benchmarks available in the public domain [181 and they are known
to have large sum-of-products representations.

First, each combinational network was converted into an
unbounded-fanin NOR representation. Then the primary inputs
to the combinational logic were ordered using the topological or-
dering heuristic given in [l]. An attempt W~JLI; made to create the
ROBDD for each output function using the same variable ordering
for all outputs. A limit of 2 megabytes (Mb:) was placed on the
memory usage of the ROBDD package. A hash-based cache was
used for the computed-table, and a load factor of 4 was used for the
unique-table. The ratio of the number of bins in the computed-table
to the number of bins in the unique-table was 1. The data is
presented in Table 1.

The CPU time is given in seconds on a Sun 3/60 with 8 Mb of
memory. Shown in the table are the results for both a fixed input
order (where one input variable ordering is ,used for all outputs
simultaneously) and a variable input order (where different input
orderings are used for each output). Example C3540 required 12
Mb to complete; the rest finished within the 2 Mb limit For
C2670, C6288, and C75.52, we were unable to form the ROBDD
for all outputs using a fixed input order. Example C6288 is a 32-
bit multiplier for which it has been proven that the ROBDD always
requires exponential size for some output [13] even for the optimum
input ordering. We were able to form the ROBDD for only the first
12 outputs of this example with a 12 Mb memory limit placed on
the package.

The results presented here are more than ten times faster than
the times than reported in [l. 21. even when accounting for the
difference in the machines.’ This improvement comes only from
the implementation of the ROBDD package as described here; the
variable orders, although probably not identical, were created using
similar algorithms.

6.2 Implication-Set Results

The F-sets of a digital circuit are defined as [93:

Fij(S) = {ZIS = i * 2 = j}

'Required 12mBtocomplcte.
‘For example, C432 required between 529 and I.423 seconds on a Sun

3R60 in [2] and a between 530 and 1232 seconds on a DEC VAX 8650 in
[l] (forming each BDD twice) depending on the program options used. If
we assume a ratio of 4:3 for Sun 3R60 to Sun 3/6O. and a ratio of 2:l for
DEC VAX 8650 to Sun 3/60, the run-time ratios arc: in the range g-22 and
6-14 respectively. Other examples show larger differences.

1 Example 1 Cl0 size 1 FlOsize 1 CPU)
I I (se4

C432 1 2,470 1 2,534 1 168
c499 2.753 2,753 816
C880 2,900 2,916 81
Cl355 20,530 20,530 1.425
Cl908 15,178 15,332 477
c5315 41,742 43,130 1.020
rot 1 7,943 1 10,175 1 177

Table 2: F-set computation results.

That is, fox example, tbe Fro-set of a signal s is the set of other
signals z in the network such that J = 1 implies z = 0. Trevillyan
and Berman show how to use the F-sets and subsets of the F-sets
(called C-sets) in a logic optimization algorithm.

A trivial algorithm to compute the F-sets is to check if s 5 Z
for all pairs of signals 8 and 2 in the circuit. This check is done
using the ite~onskznt algorithm described earlier. Table 2 shows
the results of forming the F-set for each example from the previous
section. Shown in the table is the total size of the &-set and Fro-
set for each example. Note that we are unable to form the F-sets
for C2670, C3540, C6288, and C7552 because we are unable to
simultaneously create the ROBDD for every node in these networks.

The surprising conclusion is that the C-set is a substantial
percentage of the F-set for most circuits. Also, we were able to
compute the F-sets for many of these large circuits.

7 Conclusions
This paper has presented an efficient implementation of a package
for manipulating Boolean functions represented as ROBDDS. This
implementation is substantially faster than straightforward imple-
mentations of the original algorithms reported in [13]. The use
of the caching computed-table, and other improvements such as
merging the unique-table and ROBDD. lead to a version of the
ROBDD package which is faster and much more memory efficient
than versions implemented at CMU, for which experimental results
have not been reported.

The amortized cost for all memory used by the package is
approximately 22 bytes per node, which is substantially below that
reported for similar packages. The run-time on a set of standard
circuits shows the superiority of this implementation compared to
similar packages. We have presented data for computing the F-sets
in a circuit, and are the tirst to show that the C-set approximation
for the F-sets appears to be quite good.

References
PI

PI

131

S. Mahk, A, Wang, R. Brayton, and A, Sangiovanni-
Viicentelli, “Logic Verification using Binary Decision Di-
agrams in a Logic Synthesis Environment,” in Proc. Int. Conf.
CAD (KCAD-88). Nov. 1988, pp. 6-9.

M. Fujita, H. Fujisawa, and N. Kawato, “Evaluation and
Improvements of Boolean Comparison Method Based on
Binary Decision Diagrams,” in Proc.Int. Conf CAD (ICCAD-
88), Nov. 1988. pp. 2-5.

0. Coudert. C. Berthec and J. Madre. “Verification of Sequen-
tial Machines using Boolean Function Vectors,“in IMEC-IFIP
lnt. Workshop on Applied Formal Methods for Correct VLSI
Design, 1989.

r41

[51

f61

r71

[81

PI

IlO1

r111

r121

[I31

u41

t151

1161

iI71

D81

[191

S. Muroga, Y. Kambayashi. H. Lai, and J. Culliney, “The
Transduction Method,” IFTEE Trans. Cow., vol. 38, pp. 1404-
1424, Oct. 1989.

M. A. Breuer and A. D. Friedman, Diagnosis and Reliable
Design of Digitiul Systems. Computer Science Press, 1976.

P. McGeer and R. Brayton. “Efficient Algorithms for Com-
puting the Longest Viable Path in a Combinational Network,”
in Proc. 26th Design Automation Conference, July 1989. pp.
561-567.

K. Cho. Test Pattern Generation for Combinational and
Sequential MOS Circuits by Symbolic F&t Simulation. PhD
thesis, Carnegie Mellon University, 1988.

M. R. Carey and D. S. Johnson, Computers andbttractability.
W. H. Freeman and Company, 1979.

R. K. Brayton. C. McMullen, G. D. Hachtel. and
A. Sangiovanni-Vincentelli, Logic Minimization ,Algorithms
for VLSI Synthesis. Kluwer Academic Publishers, 1984.

D. Bostick. G. D. Hachtel, R. Jacoby, M. R. Lighmer, P Mo-
ceyunas, C. R. Morrison, and D. Ravenscroft, ‘The Boulder
Optimal Logic Design System,” in Proc. bat. Conf CAD
(ICCAD-87), Nov. 1987, pp. 62-65.

C. Y. Lee, “Representation of Switching Circuits by Binary-
Decision Programs,” Bell System Technical JOWM~, vol. 38,
pp. 985-999. July 1959.

Fortune, J. Hopcroft, and E. Schmidt, The Complexity of
Equivalence and Containment for Free Single Variable Pro-
gram Schemes. pp. 227-240. Springer-Verlag, 1978.

R. E. Bryant, “Graph-Based Algorithms for Boolean Function
Manipulation,” IEEE Trans. Comp.. vol. C-35, pp. 677-691.
Aug. 1986.

D. S. Reeves and M. J. Irwin, “FastMethods for Switch-Level
Verification of MOS Circuits,” IEEE Trans. Elec. Comp..
vol. CAD-d pp. 766-779. Sep. 1987.

K. Kaxplus, “Representing Boolean Functions with If-Then-
Else DAGs.” Computer Engineering UCSC-CRL-88-28. UC
Santa Cruz, Dec. 1988.

S. B. Akers, “Functional Testing with Binary Decision Di-
agrams,” in Eighth Annual Conference on Fault-Tolerant
Computing, 1978, pp. 75-82.

J.-C. Madre and J.-P. Billon. “Proving Circuit Correctness
using Formal Comparison between Expected and Extracted
Behavior,” in Proc. 25th Design Automation Conference, June
1988. pp. 205-210.

R. Lisanke. “Logic Synthesis Benchmarks,” in Proc. Int.
Workshop on Logic Synthesis (IWLS-89). May 1989.

L. Berman and L. Trevillyan. A Global Approach to Circuit
Size Reduction, pp. 203-214. MlT Press, 1988.

Paper 3.1

45

