
Resolution Based DP dp
Revision: 1.11

36

Idea: use resolution to existentially quantify out variables

1. if empty clause found then terminate with result unsatisfiable

2. find variables which only occur in one phase (only positive or negative)

3. remove all clauses in which these variables occur

4. if no clause left then terminate with result satisfiable

5. choose x as one of the remaining variables with occurrences in both phases

6. add results of all possible resolutions on this variable

7. remove all trivial clauses and all clauses in which x occurs

8. continue with 1.

Systemtheory 2 – Formal Systems 2 – #342201 – SS 2006 – Armin Biere – JKU Linz

Example for Resolution DP dp
Revision: 1.11

37

check whether XOR is weaker than OR, i.e. validity of:

a∨b → (a⊕b)

which is equivalent to unsatisfiability of the negation:

(a∨b) ∧ ¬(a⊕b)

since negation of XOR is XNOR (equivalence):

(a∨b) ∧ (a↔ b)

we end up checking the following CNF for satisfiability:

(a∨b) ∧ (¬a∨b)∧ (a∨¬b)

Systemtheory 2 – Formal Systems 2 – #342201 – SS 2006 – Armin Biere – JKU Linz

Example for Resolution DP cont. dp
Revision: 1.11

38

(a∨b) ∧ (¬a∨b)∧ (a∨¬b)

initially we can skip 1. - 4. of the algorithm and choose x= b in 5.

in 6. we resolve (¬a∨b) with (a∨¬b) and (a∨b) with (a∨¬b) both on b

and add the results (a∨¬a) and (a∨a) :

(a∨b) ∧ (¬a∨b)∧ (a∨¬b)∧ (a∨¬a)∧ (a∨a)

the trivial clause (a∨¬a) and clauses with ocurrences of b are removed:

(a∨a)

in 2. we find a to occur only positive and in 3. the remaining clause is removed

the test in 4. succeeds and the CNF turns out to be satisfiable

(thus the original formula is invalid – not a tautology)
Systemtheory 2 – Formal Systems 2 – #342201 – SS 2006 – Armin Biere – JKU Linz

Correctness of Resolution Based DP dp
Revision: 1.11

39

Proof. in three steps:

(A) show that termination criteria are correct

(B) each transformation preserves satisfiability

(C) each transformation preserves unsatisfiability

Ad (A):

an empty clause is an empty disjunction, which is unsatisfiable

if literals occur only in one phase assign those to 1⇒ all clauses satisfied

Systemtheory 2 – Formal Systems 2 – #342201 – SS 2006 – Armin Biere – JKU Linz

Correctness of Resolution Based DP Part (B) dp
Revision: 1.11

40

CNF transformations preserve satisfiability:

removing a clause does not change satisfiability

thus only adding clauses could potentially not preserve satisfiability

the only clauses added are the results of resolution

correctness of resolution rule shows:

if the original CNF is satisfiable, then the added clause are satisfiable

(even with the same satisfying assignment)

Systemtheory 2 – Formal Systems 2 – #342201 – SS 2006 – Armin Biere – JKU Linz

Correctness of Resolution Based DP Part (C) dp
Revision: 1.11

41

CNF transformations preserve unsatisfiability:

adding a clause does not change unsatisfiability

thus only removing clauses could potentially not preserve unsatisfiability

trivial clauses (v∨¬v∨ . . .) are always valid and can be removed

let f be the CNF after removing all trivial clauses (in step 7.)

let g be the CNF after removing all clauses in which x occurs (after step 7.)

we need to show (f unsat⇒ g unsat), or equivalently (g sat⇒ f sat)

the latter can be proven as the completeness proof for the resolution rule

(see next slide)

Systemtheory 2 – Formal Systems 2 – #342201 – SS 2006 – Armin Biere – JKU Linz

Correctness of Resolution Based DP Part (C) cont. dp
Revision: 1.11

42

If we interpret ∪ as disjunction and clauses as formulae, then

(C1∨ x)∧ . . .∧ (Ck∨ x) ∧ (D1∨¬x)∧ . . .∧ (Dl ∨¬x)

is, via distributivity law, equivalent to

((C1∧ . . .∧Ck)︸ ︷︷ ︸
C

∨x) ∧ ((D1∧ . . .∧Dl)︸ ︷︷ ︸
D

∨¬x)

and the same proof applies as for the completeness of the resolution rule.

Note: just using the completeness of the resolution rule alone does not work, since those σ′ derived
for multiple resolutions are formally allowed to assign different values for the resolution variable.

Systemtheory 2 – Formal Systems 2 – #342201 – SS 2006 – Armin Biere – JKU Linz

Problems with Resolution Based DP dp
Revision: 1.11

43

• if variables have many occurences, then many resolutions are necessary

• in the worst x and ¬x occur in half of the clauses . . .

• . . . then the number of clauses increases quadratically

• clauses become longer and longer

• unfortunately in real world examples the CNF explodes

(we will latter see how BDDs can be used to overcome some of these problems)

• How to obtain the satisfying assignment efficiently (counter example)?

Systemtheory 2 – Formal Systems 2 – #342201 – SS 2006 – Armin Biere – JKU Linz

Second version of DP dp
Revision: 1.11

44

• resolution based version often called DP, second version DPLL
(DP after [DavisPutnam60] and DPLL after [DavisLogemannLoveland62])

• it eliminates variables through case analysis: time vs space

• only unit resolution used (also called boolean constraint propagation)

• case analysis is on-the-fly:

cases are not elaborated in a predefined fixed order, but . . .

. . . only remaining crucial cases have to be considered

• allows sophisticated optimizations

Systemtheory 2 – Formal Systems 2 – #342201 – SS 2006 – Armin Biere – JKU Linz

Unit-Resolution dp
Revision: 1.11

45

a unit clause is a clause with a single literal

in CNF a unit clause forces its literal to be assigned to 1

unit resolution is an application of resolution, where one clause is a unit clause

also called boolean constraint propagation

Unit-Resolution Rule

C∪{¬l} {l}
{l,¬l}∩C = /0

C

here we identify ¬¬v with v for all variables v.

Systemtheory 2 – Formal Systems 2 – #342201 – SS 2006 – Armin Biere – JKU Linz

Unit-Resolution Example dp
Revision: 1.11

46

check whether XNOR is weaker than AND, i.e. validity of:

a∧b → (a↔ b)

which is equivalent to unsatisfiability of the CNF (exercise)

a∧b ∧ (a∨b)∧ (¬a∨¬b)

adding clause obtained from unit resolution on a results in

a∧b ∧ (a∨b)∧ (¬a∨¬b)∧ (¬b)

removing clauses containing a or ¬a

b ∧ (¬b)

unit resolution on b results in an empty clause and we conclude unsatisfiability.

Systemtheory 2 – Formal Systems 2 – #342201 – SS 2006 – Armin Biere – JKU Linz

Ad: Unit Resolution dp
Revision: 1.11

47

• if unit resolution produces a unit, e.g. resolving (a∨¬b) with b produces a, continue unit reso-
lution with this new unit

• often this repeated application of unit resolution is also called unit resolution

• unit resolution + removal of subsumed clauses never increases size of CNF

C subsumes D :⇔ C ⊆ D

a unit(-clause) l subsumes all clauses in which l occurs in the same phase

• boolean constraint propagation (BCP): given a unit l, remove all clauses in which l occurs in the
same phase, and remove all literals ¬l in clauses, where it occurs in the opposite phase (the
latter is unit resolution)

Systemtheory 2 – Formal Systems 2 – #342201 – SS 2006 – Armin Biere – JKU Linz

Basic DPLL Algorithm dp
Revision: 1.11

48

1. apply repeated unit resolution and removal of all subsumed clauses (BCP)

2. if empty clause found then return unsatisfiable

3. find variables which only occur in one phase (only positive or negative)

4. remove all clauses in which these variables occur (pure literal rule)

5. if no clause left then return satisfiable

6. choose x as one of the remaining variables with occurrences in both phases

7. recursively call DPLL on current CNF with the unit clause {x} added

8. recursively call DPLL on current CNF with the unit clause {¬x} added

9. if one of the recursive calls returns satisfiable return satisfiable

10. otherwise return unsatisfiable

Systemtheory 2 – Formal Systems 2 – #342201 – SS 2006 – Armin Biere – JKU Linz

DPLL Example dp
Revision: 1.11

49

(¬a∨b)∧ (a∨¬b)∧ (¬a∨¬b)

Skip 1. - 6., and choose x= a. First recursive call:

(¬a∨b)∧ (a∨¬b)∧ (¬a∨¬b)∧a

unit resolution on a and removal of subsumed clauses gives

b∧ (¬b)

BCP gives empty clause, return unsatisfiable. Second recursive call:

(¬a∨b)∧ (a∨¬b)∧ (¬a∨¬b)∧¬a

BCP gives ¬b, only positive recurrence of b left, return satisfiable

(satisfying assignment {a ,→ 0,b ,→ 0})

Systemtheory 2 – Formal Systems 2 – #342201 – SS 2006 – Armin Biere – JKU Linz

Expansion Theorem of Shannon dp
Revision: 1.11

50

Theorem.

f (x) ≡ x∧ f (1)∨ x∧ f (0)

Proof.

Let σ be an arbitrary assignment to variables in f including x

case σ(x) = 0:

σ(f (x)) = σ(f (0)) = σ(0∧ f (1)∨1∧ f (0)) = σ(x∧ f (1)∨ x∧ f (0))

case σ(x) = 1:

σ(f (x)) = σ(f (1)) = σ(1∧ f (1)∨0∧ f (0)) = σ(x∧ f (1)∨ x∧ f (0))

Systemtheory 2 – Formal Systems 2 – #342201 – SS 2006 – Armin Biere – JKU Linz

Correctness of Basic DPLL Algorithm dp
Revision: 1.11

51

first observe: x∧ f (x) is satisfiable iff x∧ f (1) is satisfiable

similarly, x∧ f (x) is satisfiable iff x∧ f (0) is satisfiable

then use expansion theorem of Shannon:

f (x) satisfiable iff x∧ f (0) or x∧ f (1) satisfiable iff x∧ f (x) or x∧ f (x) satisfiable

rest follows along the lines of the the correctness proof for resolution based DP

Systemtheory 2 – Formal Systems 2 – #342201 – SS 2006 – Armin Biere – JKU Linz

