
Lintao Zhang

Search Tree of SAT Problem
Unknown

True (1)

False(0)
x1=1 x1=0

x2=1

x3=1

x2=0 x2=1 x2=0

x3=0 x3=1 x3=0 x3=1 x3=0 x3=1 x3=0

x4=1

(x1’ + x2’)
(x1’ + x2 + x3’)
(x1’ + x3 + x4’)
(x1 + x4)



Lintao Zhang

Deduction Rules for SAT
! Unit Literal Rule: If an unsatisfied clause has all but one of its 

literals evaluate to 0, then the free literal must be implied to be 
1. 

(a + b + c)(d’ + e)(a + b + c’ + d)

! Conflicting Rule: If all literals in a clause evaluate to 0, then 
the formula is unsatisfiable in this branch. 

(a + b + c)(d’ + e)(a + b + c’ + d)



Lintao Zhang

Search Tree of SAT Problem
Unknown

True (1)

False(0)
x1=1 x1=0

x2=1

x3=1

x2=0 x2=1 x2=0

x3=0 x3=1 x3=0 x3=1 x3=0 x3=1 x3=0

x4=1

(x1’ + x2’)
(x1’ + x2 + x3’)
(x1’ + x3 + x4’)
(x1 + x4)



Lintao Zhang

Search Tree of SAT Problem

x1=1 x1=0

x2=1

x3=1

x2=0 x2=1 x2=0

x3=0 x3=1 x3=0 x3=1 x3=0 x3=1 x3=0

x4=1

Unknown

True (1)

False(0)

(x1’ + x2’)
(x1’ + x2 + x3’)
(x1’ + x3 + x4’)
(x1 + x4)



Lintao Zhang

Search Tree of SAT Problem

x1=1 x1=0

x2=1

x3=1

x2=0 x2=1 x2=0

x3=0 x3=1 x3=0 x3=1 x3=0 x3=1 x3=0

x4=1

Unknown

True (1)

False(0)

(x1’ + x2’)
(x1’ + x2 + x3’)
(x1’ + x3 + x4’)
(x1 + x4)



Lintao Zhang

Search Tree of SAT Problem

x1=1 x1=0

x2=1

x3=1

x2=0 x2=1 x2=0

x3=0 x3=1 x3=0 x3=1 x3=0 x3=1 x3=0

x4=1

Unknown

True (1)

False(0)

(x1’ + x2’)
(x1’ + x2 + x3’)
(x1’ + x3 + x4’)
(x1 + x4)



Lintao Zhang

Search Tree of SAT Problem

x1=1 x1=0

x2=1

x3=1

x2=0 x2=1 x2=0

x3=0 x3=1 x3=0 x3=1 x3=0 x3=1 x3=0

x4=1

Unknown

True (1)

False(0)

(x1’ + x2’)
(x1’ + x2 + x3’)
(x1’ + x3 + x4’)
(x1 + x4)



Lintao Zhang

DLL Algorithm 

M. Davis, G. Logemann and D. Loveland, “A Machine Program for 
Theorem-Proving", Communications of ACM, Vol. 5, No. 7, pp. 394-397, 
1962

! Basic framework for many modern SAT solvers
! Also known as DPLL for historical reasons



Lintao Zhang

Basic DLL Procedure - DFS

(a + c + d)
(a + c + d’)
(a + c’ + d)
(a + c’ + d’)

(a’ + b + c)

(b’ + c’ + d)
(a’ + b + c’)
(a’ + b’ + c)



Lintao Zhang

Basic DLL Procedure - DFS

(a + c + d)
(a + c + d’)
(a + c’ + d)
(a + c’ + d’)

(a’ + b + c)

(b’ + c’ + d)
(a’ + b + c’)
(a’ + b’ + c)

a



Lintao Zhang

Basic DLL Procedure - DFS
a

0
(a + c + d)
(a + c + d’)
(a + c’ + d)
(a + c’ + d’)

(a’ + b + c)

(b’ + c’ + d)
(a’ + b + c’)
(a’ + b’ + c)

⇐ Decision



Lintao Zhang

Basic DLL Procedure - DFS
a

0
(a + c + d)
(a + c + d’)
(a + c’ + d)
(a + c’ + d’)

(a’ + b + c)

(b’ + c’ + d)
(a’ + b + c’)
(a’ + b’ + c)

b
0 ⇐ Decision



Lintao Zhang

Basic DLL Procedure - DFS
a

0
(a + c + d)
(a + c + d’)
(a + c’ + d)
(a + c’ + d’)

(a’ + b + c)

(b’ + c’ + d)
(a’ + b + c’)
(a’ + b’ + c)

b
0

c
0 ⇐ Decision



Lintao Zhang

Basic DLL Procedure - DFS
a

0
(a + c + d)
(a + c + d’)
(a + c’ + d)
(a + c’ + d’)

(a’ + b + c)

(b’ + c’ + d)
(a’ + b + c’)
(a’ + b’ + c)

b
0

c
0

d=1

c=0

(a + c + d)
a=0

d=0
(a + c + d’)

Conflict!Implication Graph



Lintao Zhang

Basic DLL Procedure - DFS
a

0
(a + c + d)
(a + c + d’)
(a + c’ + d)
(a + c’ + d’)

(a’ + b + c)

(b’ + c’ + d)
(a’ + b + c’)
(a’ + b’ + c)

b
0

c
0

d=1

c=0

(a + c + d)
a=0

d=0
(a + c + d’)

Conflict!Implication Graph



Lintao Zhang

Basic DLL Procedure - DFS
a

0
(a + c + d)
(a + c + d’)
(a + c’ + d)
(a + c’ + d’)

(a’ + b + c)

(b’ + c’ + d)
(a’ + b + c’)
(a’ + b’ + c)

b
0

c
0

⇐ Backtrack



Lintao Zhang

Basic DLL Procedure - DFS
a

0
(a + c + d)
(a + c + d’)
(a + c’ + d)
(a + c’ + d’)

(a’ + b + c)

(b’ + c’ + d)
(a’ + b + c’)
(a’ + b’ + c)

b
0

c
0

d=1

c=1

(a + c’ + d)
a=0

d=0
(a + c’ + d’)

Conflict!

1 ⇐ Forced Decision



Lintao Zhang

Basic DLL Procedure - DFS
a

0
(a + c + d)
(a + c + d’)
(a + c’ + d)
(a + c’ + d’)

(a’ + b + c)

(b’ + c’ + d)
(a’ + b + c’)
(a’ + b’ + c)

b
0

c
0 1

⇐ Backtrack



Lintao Zhang

Basic DLL Procedure - DFS
a

0
(a + c + d)
(a + c + d’)
(a + c’ + d)
(a + c’ + d’)

(a’ + b + c)

(b’ + c’ + d)
(a’ + b + c’)
(a’ + b’ + c)

b
0

c
0 1

1 ⇐ Forced Decision



Lintao Zhang

Basic DLL Procedure - DFS
a

0
(a + c + d)
(a + c + d’)
(a + c’ + d)
(a + c’ + d’)

(a’ + b + c)

(b’ + c’ + d)
(a’ + b + c’)
(a’ + b’ + c)

b
0

c
0

d=1

c=0

(a + c’ + d)
a=0

d=0
(a + c’ + d’)

Conflict!

1

c
0

1

⇐ Decision



Lintao Zhang

Basic DLL Procedure - DFS
a

0
(a + c + d)
(a + c + d’)
(a + c’ + d)
(a + c’ + d’)

(a’ + b + c)

(b’ + c’ + d)
(a’ + b + c’)
(a’ + b’ + c)

b
0

c
0 1

c
0

1

⇐ Backtrack



Lintao Zhang

Basic DLL Procedure - DFS
a

0
(a + c + d)
(a + c + d’)
(a + c’ + d)
(a + c’ + d’)

(a’ + b + c)

(b’ + c’ + d)
(a’ + b + c’)
(a’ + b’ + c)

b
0

c
0

d=1

c=1

(a + c’ + d)
a=0

d=0
(a + c’ + d’)

Conflict!

1

c
0 1

1

⇐ Forced Decision



Lintao Zhang

Basic DLL Procedure - DFS
a

0
(a + c + d)
(a + c + d’)
(a + c’ + d)
(a + c’ + d’)

(a’ + b + c)

(b’ + c’ + d)
(a’ + b + c’)
(a’ + b’ + c)

b
0

c
0 1

c
0 1

1

⇐ Backtrack



Lintao Zhang

Basic DLL Procedure - DFS
a

0
(a + c + d)
(a + c + d’)
(a + c’ + d)
(a + c’ + d’)

(a’ + b + c)

(b’ + c’ + d)
(a’ + b + c’)
(a’ + b’ + c)

b
0

c
0 1

c
0 1

1

1 ⇐ Forced Decision



Lintao Zhang

Basic DLL Procedure - DFS
a

0
(a + c + d)
(a + c + d’)
(a + c’ + d)
(a + c’ + d’)

(a’ + b + c)

(b’ + c’ + d)
(a’ + b + c’)
(a’ + b’ + c)

b
0

c
0 1

c
0 1

1

1

b
0 ⇐ Decision



Lintao Zhang

Basic DLL Procedure - DFS
a

0
(a + c + d)
(a + c + d’)
(a + c’ + d)
(a + c’ + d’)

(a’ + b + c)

(b’ + c’ + d)
(a’ + b + c’)
(a’ + b’ + c)

b
0

c
0 1

c
0 1

1

1

b
0

c=1

b=0

(a’ + b + c)
a=1

c=0
(a’ + b + c’)

Conflict!



Lintao Zhang

Basic DLL Procedure - DFS
a

0
(a + c + d)
(a + c + d’)
(a + c’ + d)
(a + c’ + d’)

(a’ + b + c)

(b’ + c’ + d)
(a’ + b + c’)
(a’ + b’ + c)

b
0

c
0 1

c
0 1

1

1

b
0

⇐ Backtrack



Lintao Zhang

Basic DLL Procedure - DFS
a

0
(a + c + d)
(a + c + d’)
(a + c’ + d)
(a + c’ + d’)

(a’ + b + c)

(b’ + c’ + d)
(a’ + b + c’)
(a’ + b’ + c)

b
0

c
0 1

c
0 1

1

1

b
0 1

a=1

b=1

c=1
(a’ + b’ + c)

⇐ Forced Decision



Lintao Zhang

Basic DLL Procedure - DFS
a

(a + c + d)
(a + c + d’)
(a + c’ + d)
(a + c’ + d’)

(a’ + b + c)

(b’ + c’ + d)
(a’ + b + c’)
(a’ + b’ + c)

b
0

c
0 1

c
0 1

1

1

b
0 1

a=1

b=1

c=1
(a’ + b’ + c) (b’ + c’ + d)

d=1

0



Lintao Zhang

Basic DLL Procedure - DFS
a

(a + c + d)
(a + c + d’)
(a + c’ + d)
(a + c’ + d’)

(a’ + b + c)

(b’ + c’ + d)
(a’ + b + c’)
(a’ + b’ + c)

b
0

c
0 1

c
0 1

1

1

b
0 1

a=1

b=1

c=1
(a’ + b’ + c) (b’ + c’ + d)

d=1

⇐ SAT

0



Lintao Zhang

!"#$%&$'()*$#'+",

-.%"#$%&$'()*$#'+",

-."%%$/.'()*$#'+",
(a +b’+ c)(b + c’)(a’ + c’)
a = T, b = T, c is unassigned

! Implication
! A variable is forced to be assigned to be True or False based on

previous assignments.
! Unit clause rule (rule for elimination of one literal clauses)

! An unsatisfied clause is a unit clause if it has exactly one unassigned 
literal.

! The unassigned literal is implied because of the unit clause.
! Boolean Constraint Propagation (BCP)

! Iteratively apply the unit clause rule until there is no unit clause available.
! Workhorse of DLL based algorithms.

Implications and Boolean 
Constraint Propagation



Lintao Zhang

Features of DLL
! Eliminates the exponential memory requirements of DP
! Exponential time is still a problem
! Limited practical applicability – largest use seen in automatic 

theorem proving
! The original DLL algorithm has seen a lot of success for solving

random generated instances. 



Lintao Zhang

Some Notes
! There are another rules proposed by the original DLL paper, 

which is seldom used in practice
! Pure literal rule: if a variable only occur in one phase in the 

clause database, then the literal can be simply assigned with the 
value true

! The original DP paper also included the unit implication rule to
simplify the clauses generated from resolution
! Still may result in memory explosion

! DLL and DP algorithms are tightly related
! Fundamentally, both are based on the resolution operation


