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Deduction Rules for SAT
! Unit Literal Rule: If an unsatisfied clause has all but one of its 

literals evaluate to 0, then the free literal must be implied to be 
1. 

(a + b + c)(d’ + e)(a + b + c’ + d)

! Conflicting Rule: If all literals in a clause evaluate to 0, then 
the formula is unsatisfiable in this branch. 

(a + b + c)(d’ + e)(a + b + c’ + d)
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DLL Algorithm 

M. Davis, G. Logemann and D. Loveland, “A Machine Program for 
Theorem-Proving", Communications of ACM, Vol. 5, No. 7, pp. 394-397, 
1962

! Basic framework for many modern SAT solvers
! Also known as DPLL for historical reasons
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Basic DLL Procedure - DFS
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!"#$%&$'()*$#'+",

-.%"#$%&$'()*$#'+",

-."%%$/.'()*$#'+",
(a +b’+ c)(b + c’)(a’ + c’)
a = T, b = T, c is unassigned

! Implication
! A variable is forced to be assigned to be True or False based on

previous assignments.
! Unit clause rule (rule for elimination of one literal clauses)

! An unsatisfied clause is a unit clause if it has exactly one unassigned 
literal.

! The unassigned literal is implied because of the unit clause.
! Boolean Constraint Propagation (BCP)

! Iteratively apply the unit clause rule until there is no unit clause available.
! Workhorse of DLL based algorithms.

Implications and Boolean 
Constraint Propagation
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Features of DLL
! Eliminates the exponential memory requirements of DP
! Exponential time is still a problem
! Limited practical applicability – largest use seen in automatic 

theorem proving
! The original DLL algorithm has seen a lot of success for solving

random generated instances. 
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Some Notes
! There are another rules proposed by the original DLL paper, 

which is seldom used in practice
! Pure literal rule: if a variable only occur in one phase in the 

clause database, then the literal can be simply assigned with the 
value true

! The original DP paper also included the unit implication rule to
simplify the clauses generated from resolution
! Still may result in memory explosion

! DLL and DP algorithms are tightly related
! Fundamentally, both are based on the resolution operation


