Announcements

- Class Web page will be up tonight
- Send me a photo (jpg, gif)
- HWK 1 will be up
- Readings will be up
- Scheduling: still working on it
 - 366 is taken at least for rest of September
- Question: why study 2SAT?
 - Understand line between NPC/P
 - Techniques for proving problems in P
 - Preprocessing
Recall Definitions

- **kSAT**
 - Literals: variables or their negations
 - Clause: disjunction of literals
 - CNF formula (Conjunctive Normal Form): conjunction of clauses
 - kCNF: CNF formula w/ at most k literals per clause
 - =kCNF: Like kCNF, but with exactly k (distinct) literals
 - kSAT: The set of satisfiable kCNF formulas
 - =kSAT: The set of satisfiable =kCNF formulas
- SAT (= set of satisfiable CNF formulas) is NP-complete

2SAT

- Recall:
 - 2-CNFS formula ϕ is unsatisfiable iff there exists a variable x, such that:
 - there is a path from x to ¬x in the graph
 - there is a path from ¬x to x in the graph
 - complexity is O(nm), where
 - n is #vars, m #clauses (note n ≤ 2m)
- Anyone have a faster algorithm?
Special cases of SAT

- What about HORN SAT:
 - Horn clause: at most one positive literal
 - Examples: (¬x \lor y), (¬x\lor¬y\lor¬z), (x)
 - Is HORN SAT in P? NPC?
 - Can be solved in polynomial time
 - Come up an efficient an algorithm

- Consider the following restriction to SAT:
 - Each clause either has at most 2 literals or is a horn clause
 - Is this problem in P? Is it NPC?
 - Provide a proof

We've seen that 2SAT \subseteq P and 3SAT is NPC

- Is 2 a magic number?
- What if we ask whether there are at least 2 satisfying assignments (for 3SAT)?
 - NPC
 - Why?
 - Add clause (x) for new variable x
- Show that the problem of recognizing \textit{=}3CNF formulas for which there is a satisfying assignment such that at most 2 literals per clause are true, is NPC
Special cases of SAT

- 2 is not a magic number
- But, can we simplify 3SAT?
- Consider the restriction
 - No variable appears >3 times
 - Ideas?
- Remains NPC
 - Given 3SAT formula, if x appears k>3 times, then
 - Replace occurrence i with \(x_i \) and
 - Add clauses \(x_1 \Rightarrow x_2, x_2 \Rightarrow x_3, \ldots, x_k \Rightarrow x_1 \)
 - Note: Can also require that no literal appears >2 times

What if no variable appears >2 times (SAT)?

- In P (magic 2)
 - Pure literals can be removed
 - So, each variable occurs exactly once per phase
 - So, each variable can at most make 1 clause true
 - So, we can reduce this to bipartite matching
 - How?
 - \(G = (V = (L \cup R), E) \), where
 - \(L \) = clauses, \(R \) = variables, \((c, v) \in E \) if \(v \) appears in \(c \)
 - Find a maximal matching (in time \(O(|V||E|) \))
 - SAT iff size maximal matching = #clauses
Special cases of SAT

- So if no variable appears >2 times (SAT), in P
- And if no variable appears >3 times (3SAT), NPC
- What about the problems of recognizing:
 - satisfiable =3CNF (!) formulas in which no variable appears >3 times?

SAT Remarks

- Can use SAT to check validity
- How?
 - \(\phi \) is valid iff \(\neg \phi \) is not SAT
 - \(\phi \) is SAT iff \(\neg \phi \) is not valid
- So, does that prove that validity is NPC?
- Random SAT:
 - Phase transition phenomena, e.g., \(\sim 4.26 \) for 3SAT
 - Local search methods
 - Algorithms: WalkSAT, Survey propagation, ...
Algorithms for SAT

- Modern SAT solvers accept input in CNF
 - Dimacs format:
 - 1 -3 4 5 0
 - 2 -4 7 0
 - ...

- Davis & Putnam Procedure (DP)
 - Dates back to the 50's
 - Based on resolution (modern algorithms are not)
 - Helps to explain learning