> CS G379 Decision Procedures for Verification Lecture 1

Announcements

Class Web page will be up tonight
Send me a photo (jpg, gif)
HWK 1 will be up
Readings will be up
Scheduling: still working on it
1 366 is taken at least for rest of September
Question: why study 2SAT?

- Understand line between NPC/P

1. Techniques for proving problems in P

- Preprocessing

Recall Definitions

kSAT

I Literals: variables or their negations
Clause: disjunction of literals

- CNF formula (Conjunctive Normal Form): conjunction of clauses
kCNF: CNF formula w/ at most k literals per clause
= $=k$ CNF: Like $k C N F$, but with exactly k (distinct) literals
1 kSAT: The set of satisfiable kCNF formulas
$11=k S A T$: The set of satisfiable $=k C N F$ formulas
SAT (= set of satisfiable CNF formulas) is NPcomplete

2SAT

Recall:
2-CNF formula ϕ is unsatisfiable iff there exists a variable x, such that:

- there is a path from x to $\neg x$ in the graph

I there is a path from $\neg x$ to x in the graph

- complexity is $\mathrm{O}(\mathrm{nm})$, where

I n is \#vars, m \#clauses (note $\mathrm{n} \leq 2 \mathrm{~m}$)
Anyone have a faster algorithm?

Special cases of SAT

What about HORNSAT:

- Horn clause: at most one positive literal

II Examples: ($\neg \mathrm{x} \vee \mathrm{y})$, ($\neg \mathrm{x} \vee \neg \mathrm{y} \vee \neg \mathrm{z})$, (x)

- Is HORNSAT in P? NPC?
- Can be solved in polynomial time
- Come up an efficient an algorithm

Consider the following restriction to SAT:

- Each clause either has at most 2 literals or is a horn clause
Is this problem in P? Is it NPC?
- Provide a proof

Special cases of SAT

We've seen that 2SAT $\in P$ and 3SAT is NPC
Is 2 a magic number?
What if we ask whether there are at least 2 satisfying assignments (for 3SAT)?
NPC
1 Why?
1 Add clause (x) for new variable x
Show that the problem of recognizing $=3$ CNF formulas for which there is a satisfying assignment such that at most 2 literals per clause are true, is NPC

Special cases of SAT

2 is not a magic number
But, can we simplify 3SAT?
Consider the restriction

- No variable appears >3 times

1 Ideas?
Remains NPC

- Given 3SAT formula, if x appears $k>3$ times, then
- Replace occurrence i with x_{i} and

1. Add clauses $x_{1} \Rightarrow x_{2}, x_{2} \Rightarrow x_{3}, \ldots, x_{k} \Rightarrow x_{1}$

Note: Can also require that no literal appears >2 times

Special cases of SAT

What if no variable appears >2 times (SAT)?

1. In P (magic 2)

- Pure literals can be removed
- So, each variable occurs exactly once per phase
- So, each variable can at most make 1 clause true
- So, we can reduce this to bipartite matching

How?

- $G=(V=(L \cup R), E)$, where
- L = clauses, $R=$ variables, $(c, v) \in E$ if v appears in c
- Find a maximal matching (in time $\mathrm{O}(|\mathrm{V}||\mathrm{E}|)$)
- SAT iff size maximal matching = \#clauses

Special cases of SAT

So if no variable appears >2 times (SAT), in P
And if no variable appears >3 times (3SAT), NPC
What about the problems of recognizing:

- satisfiable $=3$ CNF (!) formulas in which no variable appears >3 times?

SAT Remarks

Can use SAT to check validity
How?

- ϕ is valid iff $\neg \phi$ is not SAT
- ϕ is SAT iff $\neg \phi$ is not valid

So, does that prove that validity is NPC?
Random SAT:

- Phase transition phenomena, e.g., ~ 4.26 for 3SAT
- Local search methods
- Algorithms: WalkSAT, Survey propagation, ...

Algorithms for SAT

Modern SAT solvers accept input in CNF
Dimacs format:
-1-3450

- $2-470$

Davis \& Putnam Procedure (DP)

- Dates back to the 50's
- Based on resolution (modern algorithms are not)
- Helps to explain learning

