
Pete Manolios Northeastern University Fall 2007, Version 0.1

Hardware Verification: Motivation

 International Technology Roadmap for

 Semiconductors, 2005 Edition.

Verification has become the dominant cost in the design process. In
current projects, verification engineers outnumber designers, with this
ratio reaching two or three to one ….
...
Without major breakthroughs, verification will be a non-scalable, show-
stopping barrier to further progress in the semiconductor industry.
…
The overall trend from which these breakthroughs will emerge is the
shift from ad hoc verification methods to more structured, formal
processes.

Pete Manolios Northeastern University Fall 2007, Version 0.1

Hardware Verification Challenge
 Verification costs range from 30%-70% of the entire design cost.
 R&D for typical CPU: 500+ team, costing $0.5-1B.
 Pentium 4 (Bob Bently CAV 2005).

 Full-chip simulation ~20Hz on Pentium 4.
 Used ~6K CPUs 24/7: ~3 years later <1 minute of simulation cycles.
 Exhaustive testing is impossible.
 First large-scale formal verification at Intel: 60 person years.
 Checked over 14K properties: Decode, Floating point, pipeline.
 Found bugs, but no silicon bugs found to date in these areas.

Pentium FDIV
(Floating point DIVision) bug

in Pentium 386 led to a
$475 million write-off by Intel

Bob Bently CAV: $12B 2005 terms

Pete Manolios Northeastern University Fall 2007, Version 0.1

The verification problem is getting worse.
Nanotechnology: lots of inherently unreliable components.
Multicores: concurrency, coherence, parallelism.
SoC & the use of IP.
ASICs: 18 month design cycle, $25M.
Only 8-month selling window.
Over 60% require respins.
Mostly due to functional & spec errors.
- Aart de Gues, CEO Synopsis.
The markets are huge.
Question: How many cell phones to be sold in 2007?

Future of Hardware Verification

Pete Manolios Northeastern University Fall 2007, Version 0.1

Software Verification

Source Code

Testing
Development

Precise
API Usage Rules

(SLIC)

Software Model
 Checking

Read for
understanding

New API rules

Drive testing
tools

Defects

100% path
coverage

Rules

Static Driver Verifier

* Slide borrowed from SLAM Web pages

Pete Manolios Northeastern University Fall 2007, Version 0.1

"Things like even software verification, this has been the Holy
Grail of computer science for many decades but now in some
very key areas, for example, driver verification we’re building
tools that can do actual proof about the software and how it
works in order to guarantee the reliability." Bill Gates, April 18,
2002. Keynote address at WinHec 2002
Developing Drivers with the Windows® Driver Foundation, a
Microsoft Press book, is now in print, including a chapter
about Static Driver Verifier (SDV), which has new rules to
enable analysis of drivers written against the Kernel-model
Driver Framework API
Terminator: Proving that device drivers terminate
Many other applications: security, program analysis,

Software Verification

Pete Manolios Northeastern University Fall 2007, Version 0.1

Programming
Languages

Pete Manolios Northeastern University Fall 2007, Version 0.1

A programming language:
Applicative, functional subset of Lisp.
Compilable and executable.
Untyped, first-order.

A mathematical logic:
First-order predicate calculus.
With equality, induction, recursive definitions.
Ordinals up to ε0 (termination & induction).

A mechanical theorem prover:
Integrated system of ad hoc proof techniques.
Heavy use of term rewriting.
Largely written in ACL2.

ACL2 is ...

Pete Manolios Northeastern University Fall 2007, Version 0.1

Latest, “industrial-strength” theorem prover
in the Boyer-Moore family.
Used by AMD, Rockwell Collins, etc.
2005 ACM Software System Award.
6th workshop held with FloC.
“A Computational Logic” for
“Applicative Common LISP”.
Kaufmann & Moore.

ACL2

Pete Manolios Northeastern University Fall 2007, Version 0.1

Verification with ACL2
Verification system used to prove some of the largest and most
complicated theorems ever proved about commercially designed

systems.

Pete Manolios Northeastern University Fall 2007, Version 0.1

Industrial Verification with ACL2
Motorola CAP DSP.

Bit/cycle-accurate model.

Run fasters than SPW model.

Proved correctness of pipeline
hazard detection in microcode.

Verified microcode programs.

Rockwell Collins AAMP7.
MILS EAL-7 certification from
NSA for their crypto processor.

Verified separation kernel.

Rockwell Collins JEM1.

AMD Floating Point, … .

Pete Manolios Northeastern University Fall 2007, Version 0.1

ACL2 theorem prover.
Runs like a well-tuned race car in
the hands of an expert.
Unfortunately, novices don’t have
the same experience.
Disseminate: wrote a book.
Not enough: undergrads.

ACL2s: The ACL2 Sedan.
From race car to sedan.
Self-teaching.
Control a machine that is thinking
about other machines.
Visualize what ACL2 is doing.
Levels & termination (FloC’06).
Used in several classes.
Available for download [DMMV’07].

ACL2s

Pete Manolios Northeastern University Fall 2007, Version 0.1

Software Verification
Beyond IT

Pete Manolios Northeastern University Fall 2007, Version 0.1

Air Transport Development Costs
Miscellaneous

6%

Propulsion
7%

Payloads
7%

Aerodynamics
5%

Structures
28%

Systems
47%

Software Development
20%

Non Software
30%

Software Verification
50%

Pete Manolios Northeastern University Fall 2007, Version 0.1

Is Boeing a Software Company?

 Software development and verification account for 1/3 cost.
 Important to build reliable, dependable commercial avionics systems.

 The industry is heavily regulated by the FAA.

 The military side is also very dependent on software.
 1960 - 8% F4 fighter capability came from software.

 2000 - 85% F22 fighter capability provided by software.

 Even more now.

Pete Manolios Northeastern University Fall 2007, Version 0.1

Applying
Verification Technology

To Other Fields

Pete Manolios Northeastern University Fall 2007, Version 0.1

Automating
the Assembly of

Large-Scale
Component-Based

Systems

Pete Manolios Northeastern University Fall 2007, Version 0.1

Component-Based System Design
 Goals of CBSD:

 Construction of systems from independent components.
 Use of commercial-off-the-shelf (COTS) components.
 CBSD allows for separation of concerns.
 Can decrease risk, system complexity, development time & cost.
 Can increase reliability, malleability, and flexibility.

 Domain-specific challenges:
 System architecture,
 Interface definitions,
 Trusted infrastructure,
 Problem domain decomposition,
 …

Pete Manolios Northeastern University Fall 2007, Version 0.1

System Assembly

 The general challenge is the system assembly problem:
 From a pool of available components,
 Which should be selected &
 How should they be connected, integrated, assembled
 So that system requirements are satisfied?

 Currently this is application specific and labor intensive.
 Our focus is on automation:

 Algorithmically find optimal solutions directly from requirements.
 Insight: We can reduce system assembly to a satisfiability question.
 Does there exist a way of selecting & assembling components that

satisfies the system requirements?

Pete Manolios Northeastern University Fall 2007, Version 0.1

Assembly of Avionics Systems

Model &
Requirements

Intermediate
Representation

BAT, CNF, ILP, or
Pseudo-Boolean

Map and Allocation
or No Solution

System
Architect

Assemble system

Analyze Compile

Compile and
Reduce

SolveAnalyze

CoBaSA
Program

Define

Parse and
Type Check

Start

Refine
Explore

Pete Manolios Northeastern University Fall 2007, Version 0.1

Case Study: Boeing
 The models are complex, e.g.:

 Include I/O time, latency & network jitter.
 Include context switching time, cache flushing time, memory latencies.
 Based on worst-case execution time.
 For the simplest models, it takes 1/2 month to create a CoBaSA model

from a well-understood problem.
 It takes over a man-week to check that solutions we provide.
 Current models are over 500K in size, with thousands of constraints.

 We can solve current Boeing problems in minutes!
 Lots of interesting questions, e.g., scheduling.
 Working with NASA as well on cyber-physical verification.

 Control Theory
 Abstract Interpretation
 Theorem Proving

Pete Manolios Northeastern University Fall 2007, Version 0.1

Applying
Verification Technology

To
Computational Biology

Pete Manolios Northeastern University Fall 2007, Version 0.1

Pedigree Consistency
 Many problems in bioinformatics are NP-hard, e.g., pedigree

consistency.
 Relationships and genetic traits of a set of individuals
 Check if data is consistent with the Mendelian laws of inheritance.
 Inconsistent data can adversely affect linkage analysis (the process by

which genes are linked to traits such as the predisposition to diseases).

 We solve PCC using verification technology, including BAT [MOV’07].
 Our system PCS is faster than existing algorithms, and more general.
 Actual pedigree data from a study of the genetics of grasshoper song

(we are the first to solve this problem).
 Actual pedigree data on sheep from French government (INRA). We

are the first to solve some of the hard problems.
 Future: Identify other hard problems in computational biology.

Pete Manolios Northeastern University Fall 2007, Version 0.1

Pete Manolios Northeastern University Fall 2007, Version 0.1

Syllabus
 - Email addresses
 - What do you want?
 - Setting up Web/Wiki pages
 - Will upload readings for next week
 - Reschedule for Wednesdays?

Pete Manolios Northeastern University Fall 2007, Version 0.1

SAT

Pete Manolios Northeastern University Fall 2007, Version 0.1

Review of SAT, NP Completeness
 kSAT

 Literals: variables or their negations
 Clause: disjunction of literals
 CNF formula (Conjunctive Normal Form): conjunction of clauses
 kCNF: CNF formula w/ at most k literals per clause
 kSAT: The set of satisfiable kCNF formulas

 Recall: SAT (= set of satisfiable CNF formulas) is NP-complete
 NP: languages whose membership can be verified in P-time
 NPC:

� Hardest problems in NP
� P-time algorithms for an NPC problem means P-time algorithm for

every problem in NP

 3SAT is NP-complete: Can reduce SAT to 3CNF (SAT ≤p 3CNF)
 Can define a P-time function f s.t. a ∈ SAT iff f(x) ∈ 3CNF

Complexity
©D.Moshkovits

31

Where Can We Draw The Line?

On the Hardness of
Satisfiability Problems

*Blue slides mostly borrowed from D. Moshkovits

Complexity
©D.Moshkovits

32

Introduction

• Objectives:
– To show variants of SAT and check if

they are NP-hard
• Overview:

– Known results
– 2SAT
– Max2SAT

Complexity
©D.Moshkovits

33

What Do We Know?

• Checking if a propositional calculus
formula is satisfiable (SAT) is NP-
hard.

¬(x∧¬z∧(¬w∨x))∨(x∧¬y)→¬y
Example: propositional calculus formula

Complexity
©D.Moshkovits

34

What Do We Know?

• We concentrated on a special case:
CNF formulas.

(..∨..∨.....∨..)∧…∧(..∨..∨.....∨..)
structure of CNF formulas

Complexity
©D.Moshkovits

35

What Do We Know?
maximal

number of
literals per

clause

1

2

3

4

P

NP-hard

We’ll
explore this!

Complexity
©D.Moshkovits

36

2SAT

• Instance: A 2-CNF formula ϕ
• Problem: To decide if ϕ is satisfiable

(¬x∨y)∧(¬y∨z)∧(x∨¬z)∧(z∨y)

Example: a 2CNF formula

Complexity
©D.Moshkovits

37

2SAT is in P

Theorem: 2SAT is polynomial-time
decidable.

Proof: We’ll show how to solve this
problem efficiently using path
searches in graphs…

Complexity
©D.Moshkovits

38

Searching in Graphs

Theorem: Given a graph G=(V,E) and two
vertices s,t∈V, finding if there is a
path from s to t in G is polynomial-
time decidable.

Proof: Use some search algorithm
(DFS/BFS). 

Complexity
©D.Moshkovits

39

Graph Construction

• Vertex for each variable and a
negation of a variable

• Edge (α,β) iff there exists a clause
equivalent to (¬α∨β)

Complexity
©D.Moshkovits

40

Graph Construction: Example

¬x

 y
 x

¬z

 z

(¬x∨y)∧(¬y∨z)∧(x∨¬z)∧(z∨y)

¬y

Complexity
©D.Moshkovits

41

Observation

Claim: If the graph contains a path
from α to β, it also contains a path
from ¬β to ¬α.

Proof: If there’s an edge (α,β), then
there’s also an edge (¬β,¬α).

Complexity
©D.Moshkovits

42

Correctness

Claim:
a 2-CNF formula ϕ is unsatisfiable iff
there exists a variable x, such that:
1. there is a path from x to ¬x in the

graph
2. there is a path from ¬x to x in the

graph

Complexity
©D.Moshkovits

43

Correctness (1)

• Suppose there are paths x..¬x and
¬x..x for some variable x, but there’s
also a satisfying assignment ρ.

• If ρ(x)=T (similarly for ρ(x)=F):

T F

¬x x . . . α β

T F

(¬α∨β) is false!

Complexity
©D.Moshkovits

44

Correctness (2)

• Suppose there are no such paths.
• Construct an assignment as follows:

¬x

 y
 x

¬z

 z

¬y

x

1. pick an
unassigned

literal α, with
no path from α

to ¬α, and
assign it T

y

z

2. assign T to
all reachable

vertices
3. assign F to

their negations

¬x

¬y
¬z 4. Repeat until all

vertices are assigned

(¬x∨y)∧(¬y∨z)∧(x∨¬z)∧(z∨y)

Complexity
©D.Moshkovits

45

Correctness (2)

Claim: The algorithm is well defined.
Proof: If there were a path from x to

both y and ¬y,
then there would have been a path from

x to ¬y and from ¬y to ¬x.

Complexity
©D.Moshkovits

46

Correctness

A formula is unsatisfiable iff there are
no paths of the form x..¬x and ¬x..x.



Complexity
©D.Moshkovits

47

2SAT is in P

We get the following efficient
algorithm for 2SAT:
– For each variable x find if there is a

path from x to ¬x and vice-versa.
– Reject if any of these tests succeeded.
– Accept otherwise

⇒ 2SAT∈P. 

Complexity
©D.Moshkovits

48

Max2SAT

• Instance: A 2-CNF formula ϕ and a
goal K.

• Problem: To decide if there is an
assignment satisfying at least K of ϕ’s
clauses.

(¬x∨y)∧
(¬y∨z)∧
(x∨¬z)∧

(z∨y)

Example: a 2CNF formula

Complexity
©D.Moshkovits

49

Max2SAT is in NPC

Theorem: Max2SAT is NP-Complete.
Proof: Max2SAT is clearly in NP.
We’ll show 3SAT≤pMax2SAT.

(..∨..∨..)∧…∧(..∨..∨..) (..∨..)∧…∧(..∨..) ≤p

K

Complexity
©D.Moshkovits

50

Gadgets
Claim: Let
 ψ(x,y,z,w) = (x)∧(y)∧(z)∧(w)∧
 (¬x∨¬y)∧(¬y∨¬z)∧(¬z∨¬x)∧
 (x∨¬w)∧(y∨¬w)∧(z∨¬w).
• Every satisfying assignment for (x∨y∨z)

can be extended into an assignment that
satisfies exactly 7 of the clauses.

• Other assignments can satisfy at most 6 of
the clauses.









 



Proof: By checking.

Complexity
©D.Moshkovits

51

The Construction

• For each 1≤i≤m, replace the i-th
clause of the 3-CNF formula (α∨β∨γ)
with a corresponding ψ(α,β,γ,wi) to get
a 2-CNF formula.

• Fix K=7m.
Make sure this
construction is

poly-time

Complexity
©D.Moshkovits

52

Correctness

• Every satisfying assignment for the
3-CNF formula can be extended into
an assignment that satisfies 7m
clauses.

• If 7m clauses of the 2-CNF formula
are satisfied, each ψ has 7 satisfied
clauses, so the original formula is
satisfied.

Complexity
©D.Moshkovits

53

Corollary

⇒ 3SAT≤pMax2SAT and Max2SAT∈NP
⇒ Max2SAT is NP-Complete. 

Complexity
©D.Moshkovits

54

Summary

• We’ve seen that checking if a given CNF
formula is satisfiable is:
– Polynomial-time decidable, if every clause

contains up to 2 literals.
– NP-hard, if each clause may contain more than

2 literals.

• We’ve also seen Max2SAT is NP-hard.



Complexity
©D.Moshkovits

55

Conclusions

• A special case of a NP-hard problem may
be polynomial time decidable.

• The optimization version of a polynomial-
time decidable problem may be NP-hard.

• Questions:
– Horn clause: at most one positive literal.
– Examples: (¬x∨ y), (¬x∨¬y∨¬z), (x).
– Is HORNSAT in P? NPC?



