Hardware Verification: Motivation

International Technology Roadmap for
Semiconductors, 2005 Edition.

Verification has become the dominant cost in the design process. In
current projects, verification engineers outnumber designers, with this
ratio reaching two or three to one

Without major breakthroughs, verification will be a non-scalable, show-
stopping barrier to further progress in the semiconductor industry.

The overall trend from which these breakthroughs will emerge is the
shift from ad hoc verification methods to more structured, formal
processes.

Pete Manolios Northeastern University Fall 2007, Version 0.1

Hardware Verification Challenge

Q Verification costs range from 30%-70% of the entire design cost.
O R&D for typical CPU: 500+ team, costing $0.5-1B.
O Pentium 4 (Bob Bently CAV 2005).
Q Full-chip simulation ~20Hz on Pentium 4.
O Used ~6K CPUs 24/7: ~3 years later <1 minute of simulation cycles.
O Exhaustive testing is impossible.
U First large-scale formal verification at Intel: 60 person years.
QO Checked over 14K properties: Decode, Floating point, pipeline.
QO Found bugs, but no silicon bugs found to date in these areas.
Pentium FDIV
Floating point DIVision) bu
(in Pe?ﬂpi)um 386 led tcf a M
$475 million write-off by Intel
Bob Bently CAV: $12B 2005 terms

Pete Manolios Northeastern University Fall 2007, Version 0.1

Future of Hardware Verification

The verification problem is getting worse.
Nanotechnology: lots of inherently unreliable components.
Multicores: concurrency, coherence, parallelism.

SoC & the use of IP.

ASICs: 18 month design cycle, $25M.
Only 8-month selling window.

Over 60% require respins.

0000000 O

Mostly due to functional & spec errors.
- Aart de Gues, CEO Synopsis.

The markets are huge.
Question: How many cell phones to be sold in 20077

O O

Pete Manolios Northeastern University Fall 2007, Version 0.1

BAT

Bit-level Analysis Tool, version 0.2

Welcome to the homepage of BAT, the Bit-level Analysis Tool. BAT implements a
state-of-the-art decision procedure for solving quantifier-free formulas over the
extensional theory of fixed-size bit-vectors and fixed-size bit-vector arrays

Bl (memories). Such problems often appear in hardware, software, and security
ywmmeersey domains. BAT uses innovative techniques for efficiently translating from the
high-level BAT language into tractable SAT problems. These techniques include:

o A powerful technique for greatly reducing memories.
« Subformula hashing.

Malling Lists « The integration of term-rewriting technigues into the translation algorithm.
o A newiCNF generation algorithm.

Release Notes
Key features of the BAT language are:

o Strongly typed, with type inference.

« Essentially equivalent to synthesizable subsets of HDLs such as Verilog.

« User-defined functions.

e Constant definitons for easily creating parameterized models.

e Memories are treated as first-class objects. This means they can be passed
to functions and compared for (in)equality.

The result is a tool that can solve problems that cannot be handled by any other
decision procedure we have tried. For example, BAT can prove that a 32-bit 5
stage pipelined machine model refines its ISA in approximately 2 minutes. We
know of no other tools that can solve even much simpler pipeline machine
examples. See the benchmarks page for this and other benchmarks.

To find out more about BAT or to use it yourself, see the links along the left side of
this website.

Software Verification

Northeastern University Fall 2007, Version 0.1

Pete Manolios

Static Driver Verifier

Drive testing F

=

New APl rules

100% path !
coverage—

Read for
understanding Precise tools
API Usage Rules

Software Model
Checking

* Slide borrowed

Testing

from SLAM Web pages

Software Verification

0 "Things like even software verification, this has been the Holy
Grail of computer science for many decades but now in some
very key areas, for example, driver verification we’re building
tools that can do actual proof about the software and how it
works in order to guarantee the reliability." Bill Gates, April 18,
2002. Keynote address at WinHec 2002

o Developing Drivers with the Windows® Driver Foundation, a
Microsoft Press book, is now in print, including a chapter
about Static Driver Verifier (SDV), which has new rules to
enable analysis of drivers written against the Kernel-model
Driver Framework API

a Terminator: Proving that device drivers terminate
0 Many other applications: security, program analysis,

Pete Manolios

Northeastern University

Fall 2007, Version 0.1

Pete Manolios

Programming
Languages

Northeastern University

Fall 2007, Version 0.1

oooooooooooooooooo

ACL2is.. &

.....................

A programming language:
Applicative, functional subset of Lisp.
Compilable and executable.
Untyped, first-order.
A mathematical logic:
First-order predicate calculus.
With equality, induction, recursive definitions.
Ordinals up to €0 (termination & induction).
A mechanical theorem prover:
Integrated system of ad hoc proof techniques.
Heavy use of term rewriting.
Largely written in ACL2.

Northeastern University Fall 2007, Version 0.1

Pete Manolios

ACL2

Latest, “industrial-strength” theorem prover
in the Boyer-Moore family.

Used by AMD, Rockwell Collins, etc.

2005 ACM Software System Award.

6th workshop held with FloC.

“A Computational Logic” for
“Applicative Common LISP”.

Kaufmann & Moore.

A COMPUTATIONAL LOGIC

Pete Manolios Northeastern University Fall 2007, Version 0.1

Verification with ACL2

Verification system used to prove some of the largest and most
complicated theorems ever proved about commercially designed
systems.

—~— A o ~—_
/ INPUTS A.B.C:
~~/ OUTPUTS suM. CARR)
‘/ ;‘ LEVEL FUNCTION; |
\

[Procedure Mult(var)
| var k: int:= 0;

\| loop /
\il X le 0 -

| DEFINE {

\ \
%SUNLCARRYIFH‘J ~

\ (SUM, CARRY2) = N

! e 2

by mechanically
checked proofs ‘| s
— / m m
TN / =]
[0111010100011 |]
/ 00100100000011 = =
(0111010001001111
0011101001001010 | F“"‘"].NDL]]
\mn:nn:nuonx/‘ netlist m]
\ N P] u
T] u
] [}
] L}
|| ||
SEEEEEEEEEES
fabricated die plot produced by LSI Logic, Inc, from
FM9001 device I l verified NDL via conventional CAD tools
Pete Manolios Nonheastern’ U’niv’errs\ly Fall 2007, Version 0.1

Industrial Verification with ACL2

O Motorola CAP DSP.
Q Bit/cycle-accurate model.
Q Run fasters than SPW model.

0 Proved correctness of pipeline
hazard detection in microcode.

Q Verified microcode programs.
O Rockwell Collins AAMP7.

Q MILS EAL-7 certification from
NSA for their crypto processor.

0 Verified separation kernel.
0 Rockwell Collins JEM1.
0 AMD Floating Point,

Pete Manolios Northeastern University Fall 2007, Version 0.1

2 wrerrupT | [PaRTTION
CONTROLLER | | TIMERS

ACL2 theorem prover.

ACL2s: The ACL2 Sedan.

Pete Manolios

ACL2s

Runs like a well-tuned race car in
the hands of an expert.

Unfortunately, novices don't have
the same experience.

Disseminate: wrote a book.
Not enough: undergrads.

From race car to sedan.
Self-teaching.

Control a machine that is thinking
about other machines.

Visualize what ACL2 is doing.
Levels & termination (FloC'06).
Used in several classes.

Available for download [DMMV'07].

Northeastern University Fall 2007, Version 0.1

Pete Manolios

Software Verification
Beyond IT

Northeastern University Fall 2007, Version 0.1

Air Transport Development Costs

Miscellaneous
6%

Propulsio
7%

Payload
7%

Aerodyna
5%

Pete Manolios Northeastern University Fall 2007, Version 0.1

Is Boeing a Software Company?

U Software development and verification account for 1/3 cost.
O Important to build reliable, dependable commercial avionics systems.
O The industry is heavily regulated by the FAA.

Q The military side is also very dependent on software.
0 1960 - 8% F4 fighter capability came from software.
0 2000 - 85% F22 fighter capability provided by software.
O Even more now.

Pete Manolios Northeastern University Fall 2007, Version 0.1

Applying
Verification Technology
To Other Fields

Automating
the Assembly of

Large-Scale

Component-Based
Systems

Component-Based System Design

U Goals of CBSD:
U Construction of systems from independent components.
0 Use of commercial-off-the-shelf (COTS) components.
0 CBSD allows for separation of concerns.
U Can decrease risk, system complexity, development time & cost.
U Can increase reliability, malleability, and flexibility.
U Domain-specific challenges:
U System architecture,
U Interface definitions,
U Trusted infrastructure,
U Problem domain decomposition,
Q..

Pete Manolios Northeastern University Fall 2007, Version 0.1

System Assembly

U The general challenge is the system assembly problem:
U From a pool of available components,
QO Which should be selected &
U How should they be connected, integrated, assembled
U So that system requirements are satisfied?
U Currently this is application specific and labor intensive.
Q Our focus is on automation:
U Algorithmically find optimal solutions directly from requirements.
U Insight: We can reduce system assembly to a satisfiability question.

U Does there exist a way of selecting & assembling components that
satisfies the system requirements?

Pete Manolios Northeastern University Fall 2007, Version 0.1

Assembly of Avionics Systems

CoBaSA
Parse and Program Compile and
Type Check Reduce
Model & — — Intermediate
Requirements Representation
Define | Refine Analyze | Compile
Explore ‘

System ‘ BAT, CNF, ILP, or
Architect Pseudo-Boolean

. \ Assemble | system

‘[Analyze Map and Allocation %
Start or No Solution
Pete Manolios Northeastern University Fall 2007, Version 0.1

Case Study: Boeing

U The models are complex, e.g.:
O Include I/0 time, latency & network jitter.
O Include context switching time, cache flushing time, memory latencies.
0 Based on worst-case execution time.

O For the simplest models, it takes 1/2 month to create a CoBaSA model
from a well-understood problem.

O It takes over a man-week to check that solutions we provide.

O Current models are over 500K in size, with thousands of constraints.
U We can solve current Boeing problems in minutes!
U Lots of interesting questions, e.g., scheduling.
O Working with NASA as well on cyber-physical verification.

4 Control Theory

O Abstract Interpretation

U Theorem Proving

Pete Manolios Northeastern University Fall 2007, Version 0.1

Applying
Verification Technology
To

Computational Biology

Pete Manolios Northeastern University Fall 2007, Version 0.1

Pedigree Consistency

O Many problems in bioinformatics are NP-hard, e.g., pedigree
consistency.

O Relationships and genetic traits of a set of individuals
U Check if data is consistent with the Mendelian laws of inheritance.

Q Inconsistent data can adversely affect linkage analysis (the process by
which genes are linked to traits such as the predisposition to diseases).

U We solve PCC using verification technology, including BAT [MOV'07].
O Our system PCS is faster than existing algorithms, and more general.

Q Actual pedigree data from a study of the genetics of grasshoper song
(we are the first to solve this problem).

Q Actual pedigree data on sheep from French government (INRA). We
are the first to solve some of the hard problems.

Q Future: Identify other hard problems in computational biology.

Pete Manolios Northeastern University Fall 2007, Version 0.1

rn"=ﬂ-nn Noarmaindarmanr

witl SAT

License

What is PCS?

PCS, Pedigree Consistency with SAT, is a tool that solves the Pedigree Consistency Checking Problem, a wsll-knuwn problem in

Pedig describe about a of related ir ; that a pedigree is means
that it is consistent with the laws of Mendelian inheritance. Checking the consistency of pedigrees is an important problem. For
example, it turns out that i p data can y affect linkage analysis, the process by which human genes are
linked to traits such as the p position to vanous
How does PCS work?

PCS is based on formal ay, I i (SAT) i The main phase of PCS is the
) of the p y problem into a SAT problem, We then use BAT, the Bit-level Analysis Tool, to generate CNF

(Conjunctive Normal Form), which can then be processed with state-of-the-art SAT solvers. If the pedigree is not consistent, PCS
generates a report showing the inconsistencies.

Why use verification technology?

Here are two reasons. First, the y has made i in i g that can
solve large of NP- arising in practice. Agaod example is the work on SAT solving. Many of the problems
in computational biology turn outto be NP- and are to SAT; this is the case with pedigree consistency
checking. We were interested in exploring whether SAT-based methods can be used to solve important problems arising in biology
and genetics.

Syllabus

Email addresses

What do you want?

Setting up Web/Wiki pages

Will upload readings for next week
Reschedule for Wednesdays?

Pete Manolios Northeastern University Fall 2007, Version 0.1

SAT

Pete Manolios Northeastern University Fall 2007, Version 0.1

Review of SAT, NP Completeness

O kSAT
Q Literals: variables or their negations
Q Clause: disjunction of literals
O CNF formula (Conjunctive Normal Form): conjunction of clauses
O kCNF: CNF formula w/ at most k literals per clause
U kSAT: The set of satisfiable kCNF formulas
U Recall: SAT (= set of satisfiable CNF formulas) is NP-complete
O NP: languages whose membership can be verified in P-time
U NPC:
[OHardest problems in NP

[OP-time algorithms for an NPC problem means P-time algorithm for
every problem in NP

QO 3SAT is NP-complete: Can reduce SAT to 3CNF (SAT <p 3CNF)
0 Can define a P-time function f s.t. a € SAT iff f(x) € 3CNF

Pete Manolios Northeastern University Fall 2007, Version 0.1

We Draw The Line?

On the Hardness of
Satisfiability Problems

.. *Blue slides mostly borrowed from D. Moshkovits 3!

Introduction

- Objectives:
- To show variants of SAT and check if
they are NP-hard
+ Overview:
- Known results
- 25AT
- Max2SAT

What Do We Know?

* Checking if a propositional calculus
formula is satisfiable (SAT) is NP-
hard.

(=20 W) (xn) =y

What Do We Know?

+ We concentrated on a special case:
CNF formulas.

structure of CNF formulas

What Do We Know?

maximal P []

number of NP-hard -
literals per
clause

we'll
explore this!

2SAT

- Instance: A 2-CNF formula ¢
* Problem: To decide if ¢ is satisfiable

Example: a 2CNF formula

2SAT is inP

Theorem: 2SAT is polynomial-time
decidable.

Proof: We'll show how to solve this
problem efficiently using path
searches in graphs...

Searching in Graphs

Theorem: Given a graph 6=(V,E) and two
vertices s,t€V, finding if there is a
path from s to 1 in G is polynomial-
time decidable.

Proof: Use some search algorithm
(DFS/BFS). m

Graph Construction

- Vertex for each variable and a
negation of a variable

- Edge (o) iff there exists a clause
equivalent to (-avp)

¢ ¢

Graph Construction: Example

Observation

Claim: If the graph contains a path
from a to B, it also contains a path
from -p to -a.

Proof: If there's an edge (a.,), then
there's also an edge (=f3,~).

Correctness

Claim:

a 2-CNF formula ¢ is unsatisfiable iff

there exists a variable x, such that:

1. thereis a path from x to -x in the
graph

2. there is a path from -x to x in the
graph

Correctness (1)

« Suppose there are paths x..-x and
-X..X for some variable x, but there's
also a satisfying assignment p.

« If p(x)=T (similarly for p(x)=F):

(~avp) is falsel!

Correctness (2)

« Suppose there are no such paths.

» Construct an assignment as follows:
. 2. assigh T to
1. pick an \ all reachable
unassigned vertices
literal o, with 3. assign F to

A (7l Ve @ their negations
to ~a, and
assign it 4. Repeat until all

vertices are assignhed
44

Correctness (2)

Claim: The algorithm is well defined.

Proof: If there were a path from x to
both y and -y,

then there would have been a path from
x to =y and from -y fo -x.

Correctness

A formula is unsatisfiable iff there are

no paths of the form x..-x and -x..x.
m

2SAT is inP

We get the following efficient
algorithm for 2SAT:

- For each variable x find if there is a
path from x to -x and vice-versa.

- Reject if any of these fests succeeded.
- Accept otherwise

= 2SATEP. 1

Max2SAT

- Instance: A 2-CNF formula ¢ and a
goal K.

* Problem: To decide if there is an

assignment satisfying at least K of ¢'s
clauses. Example: a 2CNF formula

Max2SAT is in NPC

Theorem: Max2SAT is NP-Complete.
Proof: Max2SAT is clearly in NP.
We'll show 3SAT<,Max2SAT.

(vev)aea(av.v.) m v)nea(vy)
K

Yxy.zw) = ()AyIa(2)a(w)a
(=xv=y)A(=yv=2z)A(=2zv-X)A
(xv=w)A(yv-w)a(zv-w).

» Every satisfying assignment for (xvyvz)
can be extended info an assignment that
satisfies exactly 7 of the clauses.

* Other assignments can satisfy at most 6 of
the clauses.

The Construction

* For each l<i=m, replace the i-th
clause of the 3-CNF formula (avpvy)
with a corresponding y(a, 3,y w,) To get
a 2-CNF for'mlda..

« Fix K=7m. L

Correctness

- Every satisfying assignment for the
3-CNF formula can be extended into
an assignment that satisfies 7m
clauses.

« If 7m clauses of the 2-CNF formula
are satisfied, each ¢ has 7 satisfied
clauses, so the original formula is
satisfied.

Corollary

= 35AT<,Max2SAT and Max2SATENP
= Max2SAT is NP-Complete. B

-2
Summary U

-+ We've seen that checking if a given CNF
formula is satisfiable is:

- Polynomial-time decidable, if every clause
contains up to 2 literals.

- NP-hard, if each clause may contain more than
2 literals.

- We've also seen Max2SAT is NP-hard.

-
ConclusionsU

» A special case of a NP-hard problem may
be polynomial time decidable.

* The optimization version of a polynomial-
time decidable problem may be NP-hard.

* Questions:

- Horn clause: at most one positive literal.
- Examples: (-xv y), (-xv-yv-2z), (x).

- Is HORNSAT in P? NPC?

