HWK2 September 2007 Panagiotis Manolios
Due 10/17/2007 before class starts.

Exercise 1. Develop an efficient algorithm that given as input a
Boolean formula over variables x1, x», . .., z,, and Boolean operators
A, V,, =, generates an equivalent formula, but where — is applied
only to variables. For example, =(x; A (22 V —x3)) might get turned
into -z V (—zg Axz). Note that you cannot introduce new variables.
Analyze the running time of your algorithm, and, as precisely as you
can, bound the size of the output in terms of the size of the input.

Exercise 2. Let f be a Boolean formula over variables x1, s, ..., x,
and Boolean operators A,V,—. A subformula is an even formula if
it falls under an even number of negations: that is, if we were to
construct the parse tree, then the number of — operators from this
subformula to the root of the parse tree is even. If a subformula is
not even, it is odd. Consider a modification to the Tseitin trans-
formation, where instead of generating a new variable, say y, for
subformula g and adding the constraint y < ¢, instead, we just add
the constraint y = g, if g is even, and g = y otherwise. Give pseu-
docode for the modified Tseitin and prove that the CNF generated
by your code is equisatisfiable with f. Hint: First think about the
restricted case where — is only applied to variables.

Exercise 3. You want to check the satisfiability of two CNF for-
mulas, f and g, i.e., f and g are sets of clauses. There is substantial
overlap between f and g. You will start by checking f, but when
you check g, you would like to take advantage of all the work the
SAT solver did to check f. Develop an algorithm to do this and ar-
gue that it is correct. How do you think your algorithm will perform
and why?

Exercise 4. Come up with an interesting application for SAT. Per-
haps it is based on work you are doing or perhaps it is related to a
hard problem you encountered at some point in your career. Why
is your application interesting? I encourage to come up with some-
thing cool. How can you encode it in CNF? Download at least two
different SAT solvers, and use them to solve several hard instances
of your problem. Explain your experimental results.



Exercise 5. Recall the definition of NICE dags. Let VARS be a
set of Boolean variables. Then a Negation, Ite, Conjunction, and
FEquivalence dag (NICE dag) over VARS is a dag, C' = (V, E) such
that

1. ECV xV

2. Each vertex, v € V, is labeled with an operator, op(v) €
OPS = VARS U {—, <, A, ite, true, false}.

3. (v e V sit. op(v) € {true, false}) =V = {v}.

4. Each vertex v € V s.t. op(v) = — has an additional label,
arg(v) € V s.t. op(arg(v)) # —.

5. Each vertex v € V s.t. op(v) = ite has 3 additional labels,
test(v) € V, then(v) € V, and else(v) € V.

6. Allv € Vs.t. op(v) € {—, <, A, ite} are labeled with args(v) C
V such that
o args(v) ={weV | (v,w) € E}
e op(v) = /\:>\a7"gs()|22
o op(v) = = (args(v) = {test(v), then(v), else(v)} A
\args(v | = 3 A op(test(v)) # = A op(then(v)) # —)
e op(v) =~ = args(v) = {arg(v)}
e op(v) == = |args(v)| =2 A (Vw € args(v) :: op(w) # =)
o Vu,weV:op(u)=- N w=arg(u):u ¢ args(v)
Vw ¢ args(v))
7. No two vertices have the same labels.

8. There is exactly one source in V', denoted source(C')

The semantics of NICE dags are fairly straightforward. Variables
are given values by an environment and operators are applied to the
values of their operands in the usual way.



Definition 1 Given a NICE dag, (V, E) over variables VARS, we
define an evaluator function for NICE dags, V x(VARS — {true, false}) —
{true, false} as follows.

e When op(v) € VARS, [v] = €(v).

o When OZ)(U) =N, [[U]]e = /\weargs(v) [[w]]e

e When op(v) =<, [v]° = v1 < ve where {vy,v9} = args(v).

o When op(v) = ite, [o]° = { [then(v)]® when [test(v)]® = true

lelse(v)]  otherwise

We now define equivalence between two NICE dags as being the
equivalence of their respective values under any environment.

Definition 2 Two NICE dags, Cy,Cy over variables VARS, are
said to be equivalent if, for alle : VARS — {true, false}, [source(C)]" =
[source(Cs)] . We denote this as Cy = Cs.

NICE dags are built from the ground up, by using functions that
create a new NICE dag by applying an operator to existing NICE
dags. Some of the algorithms for doing this are given in Figure 1.
To ensure the uniqueness of vertices, we keep a global table, GTAB
containing all the vertices that we create. We also maintain the
invariant that GTAB only contains NICE dags. Initially, GTAB
contains one vertex for each variable, as well as the nodes ZERO
and ONE, which have ops false and true, respectively. Assume that
we have functions uand, unot, and uiff that check if a node with
the corresponding op and labels already exists in the GTAB. If
it does, that node is returned. Otherwise, a new node with those
labels is created, inserted into GTAB, and returned.

The algorithms in Figure 1 maintain the invariant that every ver-
tex in GTAB corresponds to a NICE dag over VARS. Each algorithm
has the precondition that the input vertices are already in GTAB.
The algorithms return a vertex corresponding to a NICE dag that
is equivalent to the result of creating a NICE dag corresponding to
applying the same operation to the inputs dags.

Only code for the operations and and not are provided. Your job
is to provide code for or, implies, and iff. Also, provide the pre
and post conditions for iff.



not (v)

Pre: ve GTAB
Post: (Ve :: [not (v)]° =~ [v]°)
and (W) if v = ONE then
Pre: [W|>2,(Vve W :ve GTAB) return ZERO
Post: (Ve :: [and (W)]* = A, cw [v]%) else if v = ZERO then
W=w return ONE
if (3v € W’ :: v = ZERO) then else if op(v) = - then
return ZERO return arg(v)
else else
if (3v € W’ :: v = ONE) then return unot (v)
W’ = W'\w.
if W = {v} then or (W)
return v Pre: |[W|>2,(Vv € ZV NS GTAGB>
else if (Jvy, vy € W' i v; = not (v2)) Post: (Ve :: [or (W)]" =V e [v]")
297
then e
return ZERO impl (v1,v2)
else

Pre: vi,v2 € GTAB
Post: (Ve :: [impl (vy, v2)] = [v1]° = [v2]°)
777

return uand (W’))

iff (Ul, UQ) 777

Figure 1: Code for and and not



