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1 Exam 2: Dec 2nd

• Up to material covered to end of November

• Focus on material after exam 1

• Take home option: due midnight on Thursday. Released after class.
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2 Presentations

• See the schedule: next week

3 Term Rewrite Systems

3.1 Basic Definitions

• Rewrite rule: an equation l = r, ofter written l→ r such that

– l is not a var

– Vars(l) ⊆ Vars(r)

∗ book doesn’t require this, neither does ACL2s, but standard

• Term Rewrite System (TRS)

– a set of rewrite rules

• Reduction relation for Term Rewrite System R, →R:

– Pairs (s, t) st. t is s after applying a rewrite rule

– {(s, t) | ∃(l, r) ∈ R st. s has subterm lσ, for some substitution σ
and t is s with the subterm replaced by rσ}

• We may drop the subscript and write → instead of →R

• Above fleshes out how to relate Term Rewriting Systems with Reduc-
tion Relations, something we considered last time

• A reduction relation is canonical (or convergent) iff it is terminating
and confluent

• →R is canonical iff it is terminating & locally confluent (Newman’s
lemma)

• If →R is canonical, every term has a unique normal form (last time)

• If s has a unique normal form, we write it as s ↓R
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3.2 Equational Reasoning

3.2.1 Main Question: Validity

• Given E, a set of equalities (eg, TRS), prove E |= s = t

• Alternatively, prove s↔∗
E t

– where ↔∗
E is the reflexive, symmetric, transitive closure of the

reduction relation of E.

– follows from Birkoff’s theorem

• Theorem: if →E is canonical, then s↔∗
E t is decidable

– Proof Sketch:

∗ C1: →E is canonical
∗ D1: s↔∗

E t iff s ↓E= t ↓E {C1, Previous Results}
∗ D2: ↓E is decidable: given s check if there is a subterm that

can we rewrited with →E , which requires matching (special
case of unification) & substitution, hence decidable; by {C1}
we can only do this finitely many times, hence decidable.

∗ D3: s↔∗
E t is decidable {D1, D2}

3.3 Motivating Example for Completion

• Consider the rules R

– f(f(x, y), z)→ f(x, f(y, z))

– f(i(x), x)→ e

• Can we decide R |= s = t using above theorem (canonicity)?

– Termination: yes (we won’t focus on that here)

– Confluent?

∗ Consider s = f(f(i(x), x), z)

∗ Apply rule 1 to s: f(i(x), f(x, z))
∗ Apply rule 2 to s: f(e, z)
∗ Notice that the new terms are irreducible (in normal form)
∗ So, not confluent
∗ We found an s which can be rewritten to non-joinable terms
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• But, we now have a proof that f(i(x), f(x, z)) = f(e, z)

• So, add rule 3, to define R1

– f(f(x, y)z)→ f(x, f(y, z))

– f(i(x), x)→ e

– f(i(x), f(x, z))→ f(e, z)

• Note that ↔∗ has not changed

• But, we can now use the above theorem

– Termination holds

– So does confluence

∗ But how do we prove that?
∗ Do we have to prove confluence directly? (Painful)
∗ We can prove local confluence (Newman’s Lemma)
∗ We can do better

• Theorem: A TRS is locally confluent iff all of its critical pairs are
joinable.

– So, enough to consider a subset of all terms, using the idea of
critical pairs.

– For a finite TRS, there are finitely many critical pairs and checking
joinability is decidable due to termination: keep applying rewrite
rules until you reach a normal form.

• Completion Algorithm (due to Knuth-Bendix):

– Start with a finite, terminating TRS and check local confluence
using critical pairs.

– If all critical pairs are joinable, done (confluent).

– Reduce, orient non-joinable critical pairs.

∗ If resulting TRS is still terminating, add new rules and recur

• What can go wrong?

– Rules generated lead to non-termination

– Algorithm never terminates (keeps generating critical pairs)
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3.4 Critical Pairs

3.4.1 Definition

• Let li → ri, i ∈ {1, 2} be two rules, with disjoint variables

– For disjointness, we have to rename variables

– l1, l2 can be the same rule, with variables renamed

• Let u be a non-variable subterm of l1 at position p

– p is like how we dive into a term using the proof builder

∗ f(f(x, y), y)|12 = y

∗ f(f(x, y), y)[w]12 = f(f(x,w), y): replacement using posi-
tions

– so l1|p = u

– p is a sequence of positive integers, possibly ε

• Let θ be a mgu of u, l2

• Starting with l1θ, we can:

– Apply rule 1 to get r1θ

– Apply rule 2 to get l1θ[r2θ]p (replace position p in l1θ with r2θ)

3.4.2 Critical Pairs Example

• Consider the previous rules R

– f(f(x, y), z)→ f(x, f(y, z))

– f(i(x), x)→ e

• What are the critical pairs?

– CP1

∗ Building blocks
· l1 = f(f(x, y), z)

· p = 1

· u = f(x, y)

· l2 = f(i(u), u)

· θ = {(x, i(u)), (y, u)}
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· l1θ = f(f(i(u), u), z)

· r1θ = f(i(u), f(u, z))

· r2θ = e

· l1θ[r2θ]p = f(e, z)

∗ Critical pair
· f(i(u), f(u, z))
· f(e, z)

∗ Irreducible!

– CP2

∗ Building blocks
· l1 = f(f(x, y), z)

· p = 1

· u = f(x, y)

· l2 = f(f(a, b), c)

· θ = {(x, f(a, b)), (y, c)}
· l1θ = f(f(f(a, b), c), z)

· r1θ = f(f(a, b), f(c, z))

· r2θ = f(a, f(b, c))

· l1θ[r2θ]p = f(f(a, f(b, c)), z)

∗ Critical pair
· f(f(a, b), f(c, z))
· f(f(a, f(b, c)), z)

∗ Joinable!
· f(f(a, b), f(c, z))→ f(a, f(b, f(c, z)))

· f(f(a, f(b, c)), z)→ f(a, f(f(b, c), z))→ f(a, f(b, f(c, z)))

3.4.3 Completion Example

• Orient, add critical pairs to get R1:

– f(f(x, y), z)→ f(x, f(y, z))

– f(i(x), x)→ e

– f(i(u), f(u, z))→ f(e, z) (New rule)

• Recur!

– But this gives a fixpoint (exercise)
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3.5 More Examples

3.5.1 Group Theory Example

1. Axioms of group theory

• (G1) ∀x, y, z : (x ◦ y) ◦ z = x ◦ (y ◦ z)
• (G2) ∀x : e ◦ x = x

• (G3) ∀x : I(x) ◦ x = e

Notice that this is an equational theory. If we had existential for in-
verses, we can use Skolemization to get this version!

2. TRS for group theory

• G1 = (x ◦ y) ◦ z → x ◦ (y ◦ z)
• G2 = e ◦ x→ x

• G3 = I(x) ◦ x→ e

• G = {G1, G2, G3}

3. Group Theory Proofs Theorem: x ◦ I(x) = e

Proof:

x ◦ I(x)
← {G2} (e ◦ x) ◦ I(x)
← {G3} ((I(I(x)) ◦ I(x)) ◦ x) ◦ I(x)
→ {G1} (I(I(x)) ◦ (I(x) ◦ x)) ◦ I(x)
→ {G3} (I(I(x)) ◦ e) ◦ I(x)
→ {G1} I(I(x)) ◦ (e ◦ I(x))
→ {G2} I(I(x)) ◦ I(x)
→ {G3} e

4. Exercise

• Run the completion algorithm.

3.6 Commutativity

• Note: x ◦ y = y ◦ x is non-terminating, no matter what we do

• Boyer-Moore idea: orient the terms this is being applied to; this is
what is done in ACL2s
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3.7 Conditional Rewriting

• Advanced topic; hard to prove any theorems
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