
Lecture 7

Pete Manolios

Northeastern

Computer Aided Reasoning, Lecture 7

Slides by Pete Manolios for CS4820

Professional Method
(definec app (a :tl b :tl) :tl

 (if (endp a)

 b

 (cons (car a)

 (app (cdr a) b))))

(definec rev (x :tl) :tl

 (if (endp x)

 nil

 (app (rev (cdr x))

 (list (car x)))))

Prove: (rev (rev x)) = x No quite right, why?

Prove: (tlp x) ⇒ (rev (rev x)) = x Contract completion!

Professional Method: use abbreviations, discover induction scheme

We’ll induct on (... x). Base case is trivial, so go to induction step
 (R (R x))

= {Def R} (R (A (R (cdr x)) (L (car x))))

= {L1} (A (R (L (car x))) (R (R (cdr x))))

= {IH} (A (R (L (car x))) (cdr x))

= {Def R} (A (L (car x)) (cdr x))

= {Def A} x

Hm, to use IH, need lemma

L1.(R (A x y)) = (A (R y) (R x))

Now I can use IH
Just equational reasoning

What Induction scheme?

(tlp x) or (rev x): minor differences

Slides by Pete Manolios for CS4820

Professional Method

Prove: (tlp x) ∧ (tlp y) ⇒ (R (A x y)) = (A (R y) (R x))

Professional Method: induct on?

Start with induction step

 (R (A x y))

= {Def A} (R (cons (car x) (A (cdr x) y)))

= {Def R} (A (R (A (cdr x) y)) (L (car x)))

= {IH} (A (A (R y) (R (cdr x))) (L (car x)))

= {Ass A} (A (R y) (A (R (cdr x)) (L (car x))))

= {Def R} (A (R y) (R x))

What Induction scheme?

(tlp x) or (rev x): minor differences

Base case?
 (R (A x y))

= {Def A} (R y)

 (A (R y) (R x))

= {Def R} (A (R y) nil)

= {L2!} (R y)

L2: (A x nil) = x

Needs proof by induction!

x controls both LHS, RHS, so probably x

Ass A: (A (A x y) z) = (A x (A y z))

(definec app (a :tl b :tl) :tl

 (if (endp a)

 b

 (cons (car a)

 (app (cdr a) b))))

(definec rev (x :tl) :tl

 (if (endp x)

 nil

 (app (rev (cdr x))

 (list (car x)))))

Slides by Pete Manolios for CS4820

ACL2 is . . .
A programming language:

Applicative, functional subset of Lisp

Compilable and executable

Untyped, first-order

A mathematical logic:
First-order predicate calculus

With equality, induction, recursive definitions

Ordinals up to (termination & induction)

A mechanical theorem prover:
Integrated system of ad hoc proof techniques
Heavy use of term rewriting
Largely written in ACL2

ϵ0

ACL2 System Architecture

Slides by Pete Manolios for CS4820

Organization of ACL2

Slides by Pete Manolios for CS4820

The draw is
orchestrated that
we do not try to
prove a subgoal by
induction until we
have processed
every subgoal
produced by the
last induction.

The top-level goal
is put in the pool.

When a formula
is drawn out, it is
passed to proof
techniques until
one applies.

Slides by Pete Manolios for CS4820

Induction
When a formula arrives at the induction technique, ACL2 computes all the
inductions suggested by the terms in the formula.

It then compares them, possibly combining several into one, and selects
one regarded as most appropriate.

It applies the scheme to the formula at hand, uses simple propositional
calculus to normalize the result, and puts each of the new formulas back
into the pool.

Propositional calculus normalization may make the instantiation of the
induction scheme look different than the scheme itself. For example,
instead of , propositional normalization
produces two formulas: and .

It is possible to prove an induction rule (see induction) so that a term
suggests other inductions.

You can override its choice of induction by supplying an induction hint.

(q ∧ (α′￼⇒ β′￼)) ⇒ (a ⇒ β)
(q ∧ ¬α′￼∧ α) ⇒ β (q ∧ β′￼∧ α) ⇒ β

Slides by Pete Manolios for CS4820

Simplification Overview
Simplification is the heart of the theorem prover. It:

applies propositional calculus, equality, and linear arithmetic decision
procedures,

uses type information and forward chaining rules to construct a
“context” describing the assumptions of each subterm,

rewrites each subterm in the appropriate context, using definitions,
conditional rewrite rules, and metafunctions,

uses propositional calculus normalization to convert the resulting
formula to an equivalent set of formulas, reduces the set under
subsumption, and deposits the surviving formulas back in the pool.

The simplifier is not guaranteed to produce formulas that are stable under
simplification; repeated trips through the simplifier, via insertion and
extraction from the pool, are used to reach the final stable form (if any).

Slides by Pete Manolios for CS4820

Destructor Elimination
Elim rule example: suppose a formula mentions (CAR A) and (CDR A). If A is a
cons, we could replace A by (CONS A1 A2), for new variables A1 and A2,
allowing us to replace (CAR A) and (CDR A) with A1 and A2.

CAR-CDR-ELIM axiom: (=> (consp x) (== (cons (car x) (cdr x)) x))

This axiom is an example of a more general form:

(=> (hyp x) (== (constructor (dest1 x) . . . (destn x)) x))

Such theorems can be stored as “destructor elimination” or elim rules.

The (desti x) are the destructor terms.

Applies when a formula contains an instance of (desti x) and x is bound to a
variable, say a.

It “splits” the formula into two, according to whether (hyp a) is true; when true,
it replaces all of the a’s in the formula (except those inside desti applications)
by (constructor (dest1 a) . . . (destn a)).

Replaces all the (desti a) terms with distinct new variable symbols, a1, … , an.

Slides by Pete Manolios for CS4820

Use of Equivalences
If the formula contains the hypothesis (== lhs rhs) and elsewhere in
the formula there is an occurrence of lhs, then rhs is substituted for lhs
in every such occurrence based on heuristics.

ACL2 supports a more general form of substitution involving equivalence
relations. The use of equalities is generalized to the use of any
equivalence relation.

(=> (^ (== (rev (rev a2)) a2)

 (tlp a2))

 (== (rev (app (rev a2) (list a1)))

 (cons a1 a2)))

(=> (tlp a2)

 (== (rev (app (rev a2) (list a1)))

 (cons a1 (rev (rev a2)))))

⇒

Slides by Pete Manolios for CS4820

Generalization
Find a subterm that appears in both the hypothesis and the conclusion,
in two different hypotheses, or on opposite sides of an equivalence

Replace that subterm by a new variable symbol

If type information (see type-prescription) or generalization rules (see
generalize) can be used to restrict the type of the new variable, then it is
so restricted. The generalized formula is then added to the pool.

(=> (tlp a2)

 (== (rev (app (rev a2) (list a1)))

 (cons a1 (rev (rev a2)))))

(=> (tlp a2)

 (== (rev (app rv (list a1)))

 (cons a1 (rev rv))))

⇒

Slides by Pete Manolios for CS4820

Elimination of Irrelevance
Eliminate irrelevant hypotheses, by partitioning them into cliques
according to the variables they mention.

If there are isolated cliques of hypotheses, then either the formula is a
theorem because those hypotheses are collectively false, or else they are
irrelevant.

Use type information to show that a clique is not false.

(=> (tlp a2)

 (== (rev (app rv (list a1)))

 (cons a1 (rev rv))))

(== (rev (app rv (list a1)))

 (cons a1 (rev rv)))

⇒

Organization of ACL2

Slides by Pete Manolios for CS4820

The draw is
orchestrated that
we do not try to
prove a subgoal by
induction until we
have processed
every subgoal
produced by the
last induction.

The top-level goal
is put in the pool.

When a formula
is drawn out, it is
passed to proof
techniques until
one applies.

Reviewed all
proof techniques

Questions?

