Lecture 7

Pete Manolios
Northeastern

Computer Aided Reasoning, Lecture 7

Professional Method

(definec app (a :tl b :tl1) :tl (definec rev (x :tl) :tl
(if (endp a) (if (endp x)
b nil
(cons (car a) Capp (rev (cdr x))
Capp (cdr a) b)))) (list (car x)1)))

Prove: (rev (rev x)) = x No quite right, why?
Prove: (tlp x) = (rev (rev x)) = x Contract completion!

Professional Method: use abbreviations, discover induction scheme

We’ll induct on (... x). Base case 1is trivial, so go to induction step
(R (R x))

= {Def R} (R (A (R (cdr x)) (L (Ccar x)))) Hm, to use IH, need lemma

= {L1} (A (R (L Ccar x))) (R (R (cdr x)))) Now I can use IH

= {IH} (A (R (L Ccar x))) (cdr x)) Just equational reasoning

= {Def R} (A (L (Ccar x)) (cdr x))

= {Def A} X

What Induction scheme? LI.CR (A x y)) = (A (Ry) (R x))

(tlp x) or (rev x): minor differences

Slides by Pete Manolios for CS4820

Professional Method

(definec app (a :tl b :tl1) :tl (definec rev (x :tl) :tl
(if (endp a) (if (endp x)
b nil
(cons (car a) Capp (rev (cdr x))
Capp (cdr a) b)))) (list (car x)1)))

Prove: (tlp x) A (tlp y) = (R (A xy)) = (AR y) (Rx))
Professional Method: induct on? x controls both LHS, RHS, so probably x

Start with induction step Base case?
(R (A xy)) (R (A x y))
= {Def A} (R (cons (car x) (A (cdr x) y))) = {Def A} (R y)
= {Def R} (A (R (A (cdr x) y)) (L (Ccar x)))
= {IH} CA (A (Ry) (R (cdr x3)) (L Ccar x))) (A (Ry) (R x))

{Ass A} (A (Ry) (A (R Ccdr x)) (L Ccar x)))) {Def R} (A (R y) nil)

= {Def R} (A (Ry) (R x)) {t2'y Ry

Ass A: (A (Axy)z)=C(CAx(Ay 2))

What Induction scheme? L2: (A x nil) = x

(tlp x) or (rev x): minor differences Needs proof by induction!

Slides by Pete Manolios for CS4820

A COMNPUTATIONAL LOSIT

ACL2is...

* A programming language:

APPLICATIVE COMMHON LISP

» Applicative, functional subset of Lisp
» Compilable and executable
» Untyped, first-order
* A mathematical logic:
» First-order predicate calculus
» With equality, induction, recursive definitions

* Ordinals up to € (termination & induction)

»* A mechanical theorem prover:
» Integrated system of ad hoc proof techniques
» Heavy use of term rewriting

» Largely written in ACL2

Slides by Pete Manolios for CS4820

ACL2 System Architecture

Slides by Pete Manolios for CS4820

Organization of ACL2

Simplify

()\ Eliminate

\ J T ™~ Destructors

User S

The top-level goal \ \ ¢y / \ N
is put in the pool. ’ ’ ‘
y) A) Use

Y 4
‘/ Ve }‘M‘\\ S ‘\T»" Equivalences

// \ (\ (\\\\\\ ! \
() N)
\ J T
\\ 1/~\ //s \\\ - l‘\\ /’/
= -~ Generalize
Induct \)’

Eliminate Irrelevance

Slides by Pete Manolios for CS4820

When a formula
is drawn out, it is
passed to proof
techniques until
one applies.

The draw is
orchestrated that
we do not try to
prove a subgoal by
induction until we
have processed
every subgoal
produced by the
last induction.

Induction

»* When a formula arrives at the induction technique, ACL2 computes all the
inductions suggested by the terms in the formula.

> It then compares them, possibly combining several into one, and selects
one regarded as most appropriate.

> It applies the scheme to the formula at hand, uses simple propositional
calculus to normalize the result, and puts each of the new formulas back
into the pool.

» Propositional calculus normalization may make the instantiation of the
induction scheme look different than the scheme itself. For example,

instead of (g A (' = f')) = (a = f), propositional normalization
produces two formulas: (g A 7a’Aa) = fand (A ' Aa) = p.

» |t is possible to prove an induction rule (see induction) so that a term
suggests other inductions.

» You can override its choice of induction by supplying an induction hint.

Slides by Pete Manolios for CS4820

Simplification Overview

» Simplification is the heart of the theorem prover. It:

> applies propositional calculus, equality, and linear arithmetic decision
procedures,

> uses type information and forward chaining rules to construct a
“context” describing the assumptions of each subterm,

> rewrites each subterm in the appropriate context, using definitions,
conditional rewrite rules, and metafunctions,

» uses propositional calculus normalization to convert the resulting
formula to an equivalent set of formulas, reduces the set under
subsumption, and deposits the surviving formulas back in the pool.

> The simplifier is not guaranteed to produce formulas that are stable under
simplification; repeated trips through the simplifier, via insertion and
extraction from the pool, are used to reach the final stable form (if any).

Slides by Pete Manolios for CS4820

Destructor Elimination

> Elim rule example: suppose a formula mentions (CAR A) and (CDR A).IfAis a
cons, we could replace A by (CONS Al A2), for new variables Al and A2,
allowing us to replace (CAR A) and (CDR A) with A1l and AZ2.

» CAR-CDR-ELIM axiom: (=> (consp x) (== (cons (car x) (cdr x)) x))
® This axiom is an example of a more general form:
> (=> (hyp x) (== (constructor (destl x) . . . (destn x)) x))
» Such theorems can be stored as “destructor elimination” or elim rules.
» The (desti x) are the destructor terms.

> Applies when a formula contains an instance of (desti x) and x is bound to a
variable, say a.

> It “splits” the formula into two, according to whether Chyp a) is true; when true,
it replaces all of the a’s in the formula (except those inside desti applications)
by (constructor (destl a) ... (destn a)).

» Replaces all the (desti a) terms with distinct new variable symbols, al, ..., an.

Slides by Pete Manolios for CS4820

Use of Equivalences

> If the formula contains the hypothesis (== lhs rhs) and elsewhere in
the formula there is an occurrence of 1hs, then rhs is substituted for 1hs
in every such occurrence based on heuristics.

» ACL2 supports a more general form of substitution involving equivalence
relations. The use of equalities is generalized to the use of any
equivalence relation.

(== (A (== (rev (rev a2)) a2)
(tlp a2))
(== (rev (app (rev a2) (list al)))
(cons al a2)))

—
(=> (tlp a2)

(== (rev (app (rev a2) (list al)))
(cons al (rev (rev a2)))))

Slides by Pete Manolios for CS4820

Generalization

» Find a subterm that appears in both the hypothesis and the conclusion,
in two different hypotheses, or on opposite sides of an equivalence

> Replace that subterm by a new variable symbol

> If type information (see type-prescription) or generalization rules (see
generalize) can be used to restrict the type of the new variable, then it is
so restricted. The generalized formula is then added to the pool.

(= (tlp a2)

(== (rev (app (rev a2) (list al)))
(cons al (rev (rev a2)))))

—
(= (tlp a2)

(== (rev (app rv (list al)))
(cons al (rev rv))))

Slides by Pete Manolios for CS4820

Elimination of Irrelevance

> Eliminate irrelevant hypotheses, by partitioning them into cliques
according to the variables they mention.

> If there are isolated cliques of hypotheses, then either the formula is a
theorem because those hypotheses are collectively false, or else they are
irrelevant.

» Use type information to show that a clique is not false.

(= (tlp a2)

(== (rev (app rv (list al)))
(cons al (rev rv))))

—

(== (rev (app rv (list al)))
(cons al (rev rv)))

Slides by Pete Manolios for CS4820

Organization of ACL2

Reviewed a.II Simplify
proof techniques .
()\ Eliminate
\ o . Destructors

User e /

\\ 4
The top-level goal ™ '\ ¥ / .
is put in the pool. } ‘
—_ \) Use
[- “‘\ ﬂ"‘\\ 7~ Equivalences
/ - /

// \ (\ (' \\\\ 4)
() N)
\) —
\\ 1/~\\ //s \\\ P l‘\\ /’/ G .
- - eneralize
Induct \)’

Eliminate Irrelevance

Slides by Pete Manolios for CS4820

When a formula
is drawn out, it is
passed to proof
techniques until
one applies.

The draw is
orchestrated that
we do not try to
prove a subgoal by
induction until we
have processed
every subgoal
produced by the
last induction.

?
S
stion

e

u

Q

i

