Lecture 5

Pete Manolios
Northeastern

Computer Aided Reasoning, Lecture 5

Questions?

> Piazza
» Update you email
> Check regularly
» Hwk, announcements
» HWK 2 went up yesterday
> Due in a week (9/23) *
> Get partners now!
» Update ACL2s

Equality

> Equality (equal, or =) is an equivalence relation
> Reflexivity: X =X

» Symmetry of Equality: x=y = y=x
> Transitivity of Equality: x=yAy=z = x=2z

> Equality Axiom Schema for Functions: For every function symbol f of arity n
we have the axiom

PX1=Y1 Ao AXn=Yn = (fX1...Xn) = (fy1... yn)

> In ACL2s, we would write (1len (cons x z)) = (len (cons y z)) as
(equal/==/= (len (cons x z)) ; equal & == are equal
(len (cons y z))) ; =’s contract requires numbers

» = and # bind more tightly than any of the propositional operators

Slides by Pete Manolios for CS4820

Built-in Functions

» Axioms for built-in functions, such as cons, car, and cdr

» Axioms are theorems we get for “free” characterizing cons, car,
cdr, consp, 1f, equal, etc.

» (car (cons x y)) = x

» (cdr (cons X y)) =y

» (consp (cons x y)) =t
px =nil = (f xy z) =2z
»X = Nl = (1f xy z) =y

» Reason about constant expressions using evaluation

»t = nil, (cons 1 Q) = (list 1), 3/9 = 1/3, C) = ’nil, .

» Note: from the the semantics of the built-in functions

Slides by Pete Manolios for CS4820

Built-in Functions

» Propositional Logic
> (not p) = (if p nil t)
> (implies p q) = (if p (if g t nil) t)
> (1ff pq) = (if p (if g t nil) (1f g nil t))

» By embedding propositional calculus and = in term language, terms (1)
can be interpreted as formulas (T # nil)

> e.g., xasaformulaisx = nil
» (foo x y z) asaformulais (foo x y z)= nil
> Similarly, we add axioms for numbers, strings, etc.

> This is all in GZ, the “ground-zero theory”

Slides by Pete Manolios for CS4820

Built-in Functions

> Similarly, we add axioms for numbers, strings, etc.
> This is all in GZ, the “ground-zero theory”
> Inference rules include

> propositional calculus

> equality

» instantiation

* Well-foundedness of ¢,

» GZ also is inductively complete: for every ¢, GZ contains the first order
induction axioms

P VY<€q (VXY T P(X) = Ply)) = (vy<€g i dly)

> When GZ is extended (definitions), the resulting theory is the inductive
completion of the extension

> Extension principles: defchoose, encapsulation, defaxiom

Slides by Pete Manolios for CS4820

Instantiation

> A substitution o is a list of the form ((vars terms) ... (varn termn))
> the vars are the “targets” (no repetitions) and the terms are their “images”

> by flo we mean, substitute every free occurrence of a target by its image

» Ccons x (let (Cy 2)) y)I(x a) ¢y b) (z c) (wd)) =
(cons a (let (Cy <)) y))

» Instantiation: If f is a theorem, so is f|o
» (len (list x)) = 1istheorem, sois (1en (list (list x y))) =1

> Are the following substitutions correct? (Review RAP)
» (cons 'a b)I((a (cons a (1list c))) (b (cons c nil)))

> (cons 'a (cons c nil))

» (cons x (f x y f))I((x (cons a b)) (f x) Cy Capp y x)))
» (cons (cons a b) (f (cons a b) (app y x) x))

Slides by Pete Manolios for CS4820

Inference Rules

» Evaluation
» Propositional calculus validities

» Includes exportation, Modus Ponens, Proof by contradiction, ...
» Equality axioms

» equality is an equivalence relation, equality schema for functions
» Instantiation

» Start with built-in axioms

» New axioms are added via definitional principle

> Also defaxiom, defchoose, encapsulation, etc can add axioms

Slides by Pete Manolios for CS4820

How to Prove Theorems

> Once you are done with contract checking, completion & generalization

» Extract the context by rewriting the conjecture into the form:
[C1 A C2 A ... A Cn] = RHS where there are as many hyps as possible

> Derived context. What obvious things follow? Common patterns:
> (endp x), (tlp x): x=nil
> (tlp x), (consp x): (tlp (rest x))
> P1 A... A n = Y: Derive ¢1,...,6n and use MP to

> Proof. Use the proof format from RAP.

> For equality, start with LHS/RHS and end with RHS/LHS or start w/ LHS
& reduce, then start w/ RHS & reduce to the same thing

> For transitive relation (=, <, <, ...) same proof format works

> For anything else reduce to t

Slides by Pete Manolios for CS4820

Equational Reasoning

(= (and (tlp x)
(tlp y))
(=> (and (consp x)
(not (equal a (first x)))

(=> (tlp (rest x))
(= (in a (rest x))

(in a Capp (rest x) y)))))

(= (in a x)
(in a Capp x y)))))
» First step: Exportation, PL simplification
» The goals are
» have as many hypotheses as possible

» flatten & simplify the propositional structure of the conjecture

Slides by Pete Manolios for CS4820

ER Example

(=>((and (tlp x) ‘J/\
L (tlp)
(=> (and (consp x)
(not (equal a (first x))) B
(=> (tlp (rest x))
(= (in a (rest x))

(in a (app (rest x) y))))),/)

(=> (in a x) c
(in a Capp x y)))))

Exportation: A= (B=C) = (AAB)=C

Slides by Pete Manolios for CS4820

ER Example

(=>((and (tlp x) ‘J/\
L (tlp y)

e (consp Xx) “\W
(not (equal a (first x))) B
(=> (tlp (rest x))
(= (in a (rest x))
(in a (app (rest x) y)) /

(=> (in a x) .
L\ (in a Capp x y)))))

Exportation: A= (B=C) = (AAB)=C

Slides by Pete Manolios for CS4820

ER Example

(=> (and (tlp x)

(tlp y)

(consp x)

(not (equal a (first x)))

(=> (tlp (rest x))

(= (in a (rest x))
(in a (app (rest x) y)))))
(= (in a x)

(in a Capp x y)))))

Slides by Pete Manolios for CS4820

ER Example

(=> /[(and (tlp x)
ey A
(consp x)
(not (equal a (first x))) A
(=> (tlp (rest x))
(= (in a (rest x))
k (in a Capp Crest x) y))))) /J

(=>nax))B
(Cin a (app x y)))@c

Exportation again: A= (B=C) = (AAB)=C

Slides by Pete Manolios for CS4820

ER Example

(=> (and (tlp x)
(tlp y)
(consp x)
(not (equal a (first x)))
(=> (tlp (rest x))

(=> (in a (rest x))
(in a (app (rest x) y))))
(in a x))
(in a (app X ¥)))))

Slides by Pete Manolios for CS4820

ER Example

(=> (and (tlp x)

(tlp y)

(consp x)

(not (equal a (first x)))
(=>§({1p (rest x)) JA

(=>L(in a (rest ;)_ﬂB
(Cin a Capp Crest x) y)))) C
(in a x))
(in a Capp X ¥)))))

Exportation again: A= (B=C) = (AAB)=C

Slides by Pete Manolios for CS4820

ER Example

(=> (and (tlp x)
(tlp yd
(consp x)
(not (Cequal a (first x)))
(=>L(ﬁnd (tlp (rest x)) :]/\

((in_a (rest x)))) B
(in(a (app (rest) Y) C
(in a x))
(in a Capp x y)))))

Exportation again: A= (B=C) = (AAB)=C

Slides by Pete Manolios for CS4820

ER Example

(=> (and (tlp x)
(tlp y)
(consp x)
(not (equal a (first x)))
(=> (and (tlp (rest x))

(in a (rest x)))
(in a (app (rest x) y)))
(in a x))
(in a Capp X ¥)))))

Notice that we cannot use exportation in the 5t" hypothesis

Slides by Pete Manolios for CS4820

Equational Reasoning

(=> (and (tlp x)
(tlp y)
(consp x)
(not (equal a (first x)))
(=> (and (tlp (rest x))

(in a (rest x)))
(in a (app (rest x) y)))
(in a x))
(in a Capp X ¥)))))

» Second Step: contract completion
» do we need any hypotheses?

» You can do this first, but it is easier to check after Exportation

Slides by Pete Manolios for CS4820

Equational Reasoning

(=> (and (tlp x)
(tlp y)
(consp x)
(not (equal a (first x)))
(=> (and (tlp (rest x))

(in a (rest x)))
(in a (app (rest x) y)))
(in a x))
(in a Capp X ¥)))))

» Third Step: Generate context
» List all hypotheses, derived context

» Can then focus on remaining goal

Slides by Pete Manolios for CS4820

ER Example

(=> (and (tlp x)

(tlp y)

Cl. (tlp) (consp x)
C2. (tlp y) (not (equal a (first x)))
C3. (consp x) (=> (and (tlp (rest x))
C4. a = (first x) (in a (rest x)))
C5. (tlp (rest x)) A (in a (rest x)) (in a (app (rest x) y)))

= (1n a (app (rest x) y)) (in a x))
6. (in a x) (in a Capp x YD)
D1. (tlp (rest x)) { C1, Def tlp, C3 }
D2. (in a (rest x)) { C6, Def in, C3, C4, PL }
D3. (in a (app (rest x) y)) { (5, MP, D1, D2 }
Goal: (in a (Capp x y))

(definec tlp (1 :all) :bool (definec in (a :all X :tl) :bool
(if (consp 1) Cand (consp X)
(tlp (rest 1)) Cor (== a (first X))
Cequal 1 O D)) (in a (Crest X)))))

Slides by Pete Manolios for CS4820

Equational Reasoning

Cl. (tlp x)

C2. (tlp y)

C3. (consp x)

C4. a = (first x)

C5. (tlp (rest x)) A (in a (rest x))

= (in a Capp (rest x) y))
C6. (in a x)

D1. (tlp (rest x)) { C1, Def tlp, C3 }

D2. (in a (rest x)) { C6, Def in, C3, C4, PL }
D3. (in a (app (rest x) y)) { (5, MP, D1, D2 }
Goal: (in a (Capp x y))

» Fourth Step: Prove the goal

» Term manipulation is now limited to the goal!

Slides by Pete Manolios for CS4820

ER Example

Cl. (tlp x)
C2. (tlp y) (definec app (x :tl y :tl) :tl
C3. (consp x) Gif Cendp x)
C4. a = (first x) y
C5. (tlp (rest x)) A (in a (rest x)) (cons (first x)

> (in a (app (rest x) y)) Capp Crest x) yII)
C6. (in a x)

- (definec tlp (1 :all) :bool

D1. (tlp (rest x)) { C1, Def tlp, C3} (if (consp 1)
D2. (in a (rest x)) { C6, Def in, C3, C4, PL } (tlp (rest 1))
D3. (in a (app (rest x) y)) { (5, MP, D1, D2 } Cequal 1 O)))

Goal: (in a (Capp x y))

(in a Capp x y))

(definec in (a :all X :t1) :bool
Cand (consp X)
(or (== a (first X))
{ Def app, C3 } (in a (rest X)))))

(in a (cons (first x) (app (rest x) y)))

{ Def 1in, car-cdr-cons axioms }

(or (equal a (first x)) (in a (app (rest x) y)))

t

{ D3, PL}

Slides by Pete Manolios for CS4820

Equational Reasoning is
Easy Peasy Lemon Squeezy

Fermat's last theorem:
For all positive integers x, y, zand n, where n > 2, x" + y* # 7"

| have a truly marvelous proof of this proposition which this margin is too
narrow to contain.

Fermat, 1637

It took 357 years for a correct proof to be found (by Andrew Wiles in 1995).

Slides by Pete Manolios for CS4820

Fermat’s Last Theorem

For all positive integers x, y, zand n, where n > 2, x" + y* # 7"

We can use Fermat's last theorem to construct a conjecture that is hard to prove.

(definec fermat (x :pos y :pos z :pos n :pos) :bool
:ic (G n 2)
(= (+ (expt x n) (expt y n)) (expt z n)))

(property (x :pos y :pos z :poS h :pos)
(= (G n?2)
(fermat x y z n))) We can play this trick with

any conjecture.
OR we can define a function that is hard to admit:

(defdata true t) Even restricted to integers,
(definec fermat (x :pos y :pos z :pos n :pos) :true =+, ,the validity problem is
:ic (> n 2) undecidable, so equational

(= (+ (expt x n) (expt y n)) (expt z n))) reasoning can be hard.

Slides by Pete Manolios for CS4820

?
S
stion

e

u

Q

i

