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Northeastern

Computer Aided Reasoning, Lecture 5



Questions?
Piazza


Update you email

Check regularly

Hwk, announcements 

HWK 2 went up yesterday

Due in a week (9/23)

Get partners now!

Update ACL2s
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Equality
Equality (equal, or =) is an equivalence relation 

Reflexivity:                   x = x

Symmetry of Equality:  x = y   ⇒  y = x


Transitivity of Equality:  x = y ∧ y = z  ⇒  x = z


Equality Axiom Schema for Functions: For every function symbol f of arity n 
we have the axiom

x1 = y1 ∧ ... ∧ xn = yn  ⇒  (f x1 ... xn) = (f y1 ... yn)


In ACL2s, we would write  (len (cons x z)) = (len (cons y z)) as

(equal/==/= (len (cons x z))  ; equal & == are equal 


            (len (cons y z))) ; =’s contract requires numbers


= and ≠ bind more tightly than any of the propositional operators
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Built-in Functions
Axioms for built-in functions, such as cons, car, and cdr


Axioms are theorems we get for “free” characterizing cons, car, 
cdr, consp, if, equal, etc. 


(car (cons x y)) = x


(cdr (cons x y)) = y


(consp (cons x y)) = t


x = nil ⇒  (if x y z) = z


x ≠ nil ⇒ (if x y z) = y


Reason about constant expressions using evaluation

t ≠ nil, (cons 1 ()) = (list 1), 3/9 = 1/3, ( ) = ’nil, …


Note: from the the semantics of the built-in functions
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Built-in Functions
Propositional Logic


(not p) = (if p nil t) 


(implies p q) = (if p (if q t nil) t) 


(iff p q) = (if p (if q t nil) (if q nil t)) 


By embedding propositional calculus and = in term language, terms (τ) 
can be interpreted as formulas (τ ≠ nil) 


e.g., x as a formula is x ≠ nil


(foo x y z) as a formula is (foo x y z)≠ nil


Similarly, we add axioms for numbers, strings, etc.

This is all in GZ, the “ground-zero theory”
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Built-in Functions
Similarly, we add axioms for numbers, strings, etc.

This is all in GZ, the “ground-zero theory”

Inference rules include 


propositional calculus

equality

instantiation


Well-foundedness of 


GZ also is inductively complete: for every φ, GZ contains the first order 
induction axioms


⟨∀y≺  :: ⟨∀x≺y :: φ(x)⟩ → φ(y)⟩ → ⟨∀y≺  :: φ(y)⟩


When GZ is extended (definitions), the resulting theory is the inductive 
completion of the extension

Extension principles: defchoose, encapsulation, defaxiom

ϵ0

ϵ0 ϵ0
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Instantiation
A substitution σ is a list of the form ((var1 term1) … (varn termn))


the vars are the “targets” (no repetitions) and the terms are their “images”

by f|σ we mean, substitute every free occurrence of a target by its image

(cons x (let ((y z)) y))|((x a) (y b) (z c) (w d)) =                
(cons a (let ((y c)) y))


Instantiation: If f is a theorem, so is f|σ

(len (list x)) = 1 is theorem, so is (len (list (list x y))) = 1


Are the following substitutions correct? (Review RAP)

(cons 'a b)|((a (cons a (list c))) (b (cons c nil)))


(cons 'a (cons c nil)) 


(cons x (f x y f))|((x (cons a b)) (f x) (y (app y x)))


(cons (cons a b) (f (cons a b) (app y x) x))
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Inference Rules
Evaluation

Propositional calculus validities


Includes exportation, Modus Ponens, Proof by contradiction, …

Equality axioms


equality is an equivalence relation, equality schema for functions

Instantiation


Start with built-in axioms

New axioms are added via definitional principle

Also defaxiom, defchoose, encapsulation, etc can add axioms
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How to Prove Theorems
Once you are done with contract checking, completion & generalization

Extract the context by rewriting the conjecture into the form:                     
[C1 ∧ C2 ∧ … ∧ Cn] ⇒ RHS where there are as many hyps as possible


Derived context. What obvious things follow? Common patterns:

(endp x), (tlp x): x=nil


(tlp x), (consp x): (tlp (rest x))


φ1 ∧… ∧ φn ⇒ ψ: Derive φ1,…,φn  and use MP to ψ


Proof. Use the proof format from RAP.

For equality, start with LHS/RHS and end with RHS/LHS or start w/ LHS 
& reduce, then start w/ RHS & reduce to the same thing

For transitive relation (⇒, <, ≤, …) same proof format works


For anything else reduce to t
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Equational Reasoning
(=> (and (tlp x)

         (tlp y))

    (=> (and (consp x)

             (not (equal a (first x)))

             (=> (tlp (rest x))

                 (=> (in a (rest x)) 

                     (in a (app (rest x) y)))))

        (=> (in a x) 

            (in a (app x y)))))

First step: Exportation, PL simplification

The goals are


have as many hypotheses as possible

flatten & simplify the propositional structure of the conjecture
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ER Example
(=> (and (tlp x)

         (tlp y))

    (=> (and (consp x)

             (not (equal a (first x)))

             (=> (tlp (rest x))

                 (=> (in a (rest x)) 

                     (in a (app (rest x) y)))))

        (=> (in a x) 

            (in a (app x y)))))


Exportation:  A ⇒ (B ⇒ C)  ≡  (A ∧ B) ⇒ C

A

B

C
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ER Example
(=> (and (tlp x)

         (tlp y)

         (consp x)

         (not (equal a (first x)))

         (=> (tlp (rest x))

             (=> (in a (rest x)) 

                 (in a (app (rest x) y)))))

    (=> (in a x) 

        (in a (app x y)))))


Exportation:  A ⇒ (B ⇒ C)  ≡  (A ∧ B) ⇒ C

A

B

C
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ER Example
(=> (and (tlp x)

         (tlp y)

         (consp x)

         (not (equal a (first x)))

         (=> (tlp (rest x))

             (=> (in a (rest x)) 

                 (in a (app (rest x) y)))))

    (=> (in a x) 

        (in a (app x y)))))
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ER Example
(=> (and (tlp x)

         (tlp y)

         (consp x)

         (not (equal a (first x)))

         (=> (tlp (rest x))

             (=> (in a (rest x)) 

                 (in a (app (rest x) y)))))

    (=> (in a x) 

        (in a (app x y)))))


Exportation again:  A ⇒ (B ⇒ C)  ≡  (A ∧ B) ⇒ C

A

B
C
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ER Example
(=> (and (tlp x)

         (tlp y)

         (consp x)

         (not (equal a (first x)))

         (=> (tlp (rest x))

             (=> (in a (rest x)) 

                 (in a (app (rest x) y))))

         (in a x)) 

    (in a (app x y)))))
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ER Example
(=> (and (tlp x)

         (tlp y)

         (consp x)

         (not (equal a (first x)))

         (=> (tlp (rest x))

             (=> (in a (rest x)) 

                 (in a (app (rest x) y))))

         (in a x)) 

    (in a (app x y)))))


Exportation again:  A ⇒ (B ⇒ C)  ≡  (A ∧ B) ⇒ C

B
C

A
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ER Example
(=> (and (tlp x)

         (tlp y)

         (consp x)

         (not (equal a (first x)))

         (=> (and (tlp (rest x))

                  (in a (rest x))) 

             (in a (app (rest x) y)))

         (in a x)) 

    (in a (app x y)))))


Exportation again:  A ⇒ (B ⇒ C)  ≡  (A ∧ B) ⇒ C

B
C

A
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ER Example
(=> (and (tlp x)

         (tlp y)

         (consp x)

         (not (equal a (first x)))

         (=> (and (tlp (rest x))

                  (in a (rest x))) 

             (in a (app (rest x) y)))

         (in a x)) 

    (in a (app x y)))))


Notice that we cannot use exportation in the 5th  hypothesis
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Equational Reasoning

Second Step: contract completion

do we need any hypotheses?


You can do this first, but it is easier to check after Exportation

(=> (and (tlp x)

         (tlp y)

         (consp x)

         (not (equal a (first x)))

         (=> (and (tlp (rest x))

                  (in a (rest x))) 

             (in a (app (rest x) y)))

         (in a x)) 

    (in a (app x y)))))
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Equational Reasoning

Third Step: Generate context

List all hypotheses, derived context

Can then focus on remaining goal

(=> (and (tlp x)

         (tlp y)

         (consp x)

         (not (equal a (first x)))

         (=> (and (tlp (rest x))

                  (in a (rest x))) 

             (in a (app (rest x) y)))

         (in a x)) 

    (in a (app x y)))))
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ER Example
C1. (tlp x)

C2. (tlp y)

C3. (consp x)

C4. a ≠ (first x)

C5. (tlp (rest x)) ∧ (in a (rest x)) 

     ⇒ (in a (app (rest x) y))

C6. (in a x)

———————————————————————————————————————-——————

D1. (tlp (rest x))  { C1, Def tlp, C3 }

D2. (in a (rest x)) { C6, Def in, C3, C4, PL }

D3. (in a (app (rest x) y)) { C5, MP, D1, D2 } 


Goal: (in a (app x y))

(=> (and (tlp x)

         (tlp y)

         (consp x)

         (not (equal a (first x)))

         (=> (and (tlp (rest x))

                  (in a (rest x))) 

             (in a (app (rest x) y)))

         (in a x)) 

    (in a (app x y)))))


(definec in (a :all X :tl) :bool

  (and (consp X)

       (or (== a (first X))

           (in a (rest X)))))


(definec tlp (l :all) :bool 

  (if (consp l)

      (tlp (rest l))

    (equal l () )))
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C1. (tlp x)

C2. (tlp y)

C3. (consp x)

C4. a ≠ (first x)

C5. (tlp (rest x)) ∧ (in a (rest x)) 

     ⇒ (in a (app (rest x) y))

C6. (in a x)

———————————————————————————————————————-——————

D1. (tlp (rest x))  { C1, Def tlp, C3 }

D2. (in a (rest x)) { C6, Def in, C3, C4, PL }

D3. (in a (app (rest x) y)) { C5, MP, D1, D2 } 


Goal: (in a (app x y))

Equational Reasoning

Fourth Step: Prove the goal

Term manipulation is now limited to the goal!
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ER Example
C1. (tlp x)

C2. (tlp y)

C3. (consp x)

C4. a ≠ (first x)

C5. (tlp (rest x)) ∧ (in a (rest x)) 

     ⇒ (in a (app (rest x) y))

C6. (in a x)

————————————————————————————————————————-—————

D1. (tlp (rest x))  { C1, Def tlp, C3 }

D2. (in a (rest x)) { C6, Def in, C3, C4, PL }

D3. (in a (app (rest x) y)) { C5, MP, D1, D2 } 


Goal: (in a (app x y))


  (in a (app x y))

=   { Def app, C3 }

  (in a (cons (first x) (app (rest x) y)))

=   { Def in, car-cdr-cons axioms }

  (or (equal a (first x)) (in a (app (rest x) y)))

=   { D3, PL }

  t

(definec tlp (l :all) :bool 

  (if (consp l)

      (tlp (rest l))

    (equal l () )))

(definec in (a :all X :tl) :bool

  (and (consp X)

       (or (== a (first X))

           (in a (rest X)))))


(definec app (x :tl y :tl) :tl

  (if (endp x)

      y

    (cons (first x) 

          (app (rest x) y))))
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Equational Reasoning is 
Easy Peasy Lemon Squeezy

Fermat's last theorem:


For all positive integers  and , where ,  


I have a truly marvelous proof of this proposition which this  margin is too 
narrow to contain.


Fermat, 1637


It took 357 years for a correct proof to be found (by Andrew Wiles in 1995).


x, y, z n n > 2 xn + yz ≠ zn
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Fermat’s Last Theorem
For all positive integers  and , where ,  


We can use Fermat's last theorem to construct a conjecture that is hard to prove.


(definec fermat (x :pos y :pos z :pos n :pos) :bool

  :ic (> n 2)

  (!= (+ (expt x n) (expt y n)) (expt z n)))


(property (x :pos y :pos z :pos n :pos)

  (=> (> n 2)

      (fermat x y z n)))


OR we can define a function that is hard to admit:


(defdata true t)

(definec fermat (x :pos y :pos z :pos n :pos) :true

  :ic (> n 2)

  (!= (+ (expt x n) (expt y n)) (expt z n)))

x, y, z n n > 2 xn + yz ≠ zn

We can play this trick with 
any conjecture.


Even restricted to integers, 
=, +, *, the validity problem is 
undecidable, so equational 
reasoning can be hard.



Questions?


