Lecture 5

Pete Manolios Northeastern

Questions?

- ▶ Piazza
 - Update you email
 - Check regularly
 - Hwk, announcements
- HWK 2 went up yesterday
 - ▶ Due in a week (9/23)
 - Get partners now!
 - Update ACL2s

Equality

- Equality (equal, or =) is an equivalence relation
 - ▶ Reflexivity: x = x
 - ▶ Symmetry of Equality: $x = y \Rightarrow y = x$
 - ▶ Transitivity of Equality: $x = y \land y = z \implies x = z$
- ▶ Equality Axiom Schema for Functions: For every function symbol *f* of arity *n* we have the axiom
- $> x_1 = y_1 \wedge ... \wedge x_n = y_n \implies (f x_1 ... x_n) = (f y_1 ... y_n)$
- ▶ = and ≠ bind more tightly than any of the propositional operators

Slides by Pete Manolios for CS4820

Built-in Functions

- Axioms for built-in functions, such as cons, car, and cdr
- Axioms are theorems we get for "free" characterizing cons, car, cdr, consp, if, equal, etc.
 - \triangleright (car (cons x y)) = x
 - \triangleright (cdr (cons x y)) = y
 - ▶ (consp (cons x y)) = t
 - $\triangleright x = nil \Rightarrow (if x y z) = z$
 - $\triangleright x \neq nil \Rightarrow (if x y z) = y$
- Reason about constant expressions using evaluation
- Note: from the the semantics of the built-in functions

Built-in Functions

- Propositional Logic
 - ▶ (not p) = (if p nil t)
 - (implies p q) = (if p (if q t nil) t)
 - ▶ (iff p q) = (if p (if q t nil) (if q nil t))
- By embedding propositional calculus and = in term language, terms (τ) can be interpreted as formulas (τ ≠ nil)
 - ▶ e.g., x as a formula is x ≠ nil
 - ▶ (foo x y z) as a formula is (foo x y z) \neq nil
- Similarly, we add axioms for numbers, strings, etc.
- ▶ This is all in GZ, the "ground-zero theory"

Built-in Functions

- ▶ Similarly, we add axioms for numbers, strings, etc.
- ▶ This is all in GZ, the "ground-zero theory"
- Inference rules include
 - propositional calculus
 - equality
 - instantiation
- ightharpoonup Well-foundedness of ϵ_0
- GZ also is inductively complete: for every φ, GZ contains the first order induction axioms
 - $^{\triangleright} \langle \forall \mathsf{y} < \epsilon_0 :: \langle \forall \mathsf{x} < \mathsf{y} :: \varphi(\mathsf{x}) \rangle \to \varphi(\mathsf{y}) \rangle \to \langle \forall \mathsf{y} < \epsilon_0 :: \varphi(\mathsf{y}) \rangle$
- ▶ When GZ is extended (definitions), the resulting theory is the inductive completion of the extension
- Extension principles: defchoose, encapsulation, defaxiom

Instantiation

- A substitution σ is a list of the form ((var₁ term₁) ... (var_n term_n))
 - the vars are the "targets" (no repetitions) and the terms are their "images"
 - by f|σ we mean, substitute every free occurrence of a target by its image
 - ▶ (cons x (let ((y z)) y))|((x a) (y b) (z c) (w d)) =
 (cons a (let ((y c)) y))
- ▶ Instantiation: If f is a *theorem*, so is $f|\sigma$
 - (len (list x)) = 1 is theorem, so is (len (list (list x y))) = 1
- Are the following substitutions correct? (Review RAP)
 - ▶ (cons 'a b)|((a (cons a (list c))) (b (cons c nil)))
 - ▶ (cons 'a (cons c nil))
 - \triangleright (cons x (f x y f))|((x (cons a b)) (f x) (y (app y x)))
 - \triangleright (cons (cons a b) (f (cons a b) (app y x) x))

Inference Rules

- Evaluation
- Propositional calculus validities
 - Includes exportation, Modus Ponens, Proof by contradiction, ...
- Equality axioms
 - equality is an equivalence relation, equality schema for functions
- Instantiation
 - Start with built-in axioms
 - New axioms are added via definitional principle
 - Also defaxiom, defchoose, encapsulation, etc can add axioms

How to Prove Theorems

- Once you are done with contract checking, completion & generalization
- ▶ Extract the context by rewriting the conjecture into the form: $[C1 \land C2 \land ... \land Cn] \Rightarrow RHS$ where there are as many hyps as possible
- Derived context. What obvious things follow? Common patterns:
 - ▶ (endp x), (tlp x): x=nil
 - ▶ (tlp x), (consp x): (tlp (rest x))
 - ▶ $\phi_1 \wedge ... \wedge \phi_n \Rightarrow \psi$: Derive $\phi_1,...,\phi_n$ and use MP to ψ
- Proof. Use the proof format from RAP.
 - For equality, start with LHS/RHS and end with RHS/LHS or start w/ LHS & reduce, then start w/ RHS & reduce to the same thing
 - ▶ For transitive relation (\Rightarrow , <, ≤, ...) same proof format works
 - For anything else reduce to t

Equational Reasoning

- ▶ First step: Exportation, PL simplification
- The goals are
 - have as many hypotheses as possible
 - flatten & simplify the propositional structure of the conjecture

Exportation: $A \Rightarrow (B \Rightarrow C) \equiv (A \land B) \Rightarrow C$

Exportation: $A \Rightarrow (B \Rightarrow C) \equiv (A \land B) \Rightarrow C$

Exportation again: $A \Rightarrow (B \Rightarrow C) \equiv (A \land B) \Rightarrow C$

Exportation again: $A \Rightarrow (B \Rightarrow C) \equiv (A \land B) \Rightarrow C$

Exportation again: $A \Rightarrow (B \Rightarrow C) \equiv (A \land B) \Rightarrow C$

Notice that we cannot use exportation in the 5th hypothesis

Equational Reasoning

- Second Step: contract completion
 - do we need any hypotheses?
- You can do this first, but it is easier to check after Exportation

Equational Reasoning

- Third Step: Generate context
 - List all hypotheses, derived context
 - Can then focus on remaining goal

```
(=> (and (tlp x))
                                                (tlp y)
                                                (consp x)
C1. (tlp x)
                                                (not (equal a (first x)))
C2. (tlp y)
                                                (=> (and (tlp (rest x))
C3. (consp x)
                                                         (in a (rest x)))
C4. a \neq (first x)
                                                    (in a (app (rest x) y)))
C5. (tlp (rest x)) \wedge (in a (rest x))
     \Rightarrow (in a (app (rest x) y))
                                               (in a x)
C6. (in a x)
                                           (in a (app x y)))))
D1. (tlp (rest x)) { C1, Def tlp, C3 }
D2. (in a (rest x)) \{ C6, Def in, C3, C4, PL \}
D3. (in a (app (rest x) y)) { C5, MP, D1, D2 }
Goal: (in a (app x y))
                                     (definec in (a :all X :tl) :bool
 (definec tlp (l :all) :bool
                                       (and (consp X)
   (if (consp 1)
                                             (or (== a (first X))
       (tlp (rest l))
                                                 (in a (rest X)))))
     (equal 1 () )))
```

Equational Reasoning

- Fourth Step: Prove the goal
 - Term manipulation is now limited to the goal!

```
C1. (tlp x)
C2. (tlp y)
                                            (definec app (x :tl y :tl) :tl
C3. (consp x)
                                              (if (endp x)
C4. a \neq (first x)
                                                  У
C5. (tlp (rest x)) \wedge (in a (rest x))
                                                (cons (first x)
    \Rightarrow (in a (app (rest x) y))
                                                      (app (rest x) y))))
C6. (in a x)
                                                (definec tlp (l :all) :bool
D1. (tlp (rest x)) { C1, Def tlp, C3 } (if (consp l)
D2. (in a (rest x)) { C6, Def in, C3, C4, PL }
                                                     (tlp (rest l))
D3. (in a (app (rest x) y)) { C5, MP, D1, D2 } (equal l()))
                                           (definec in (a :all X :tl) :bool
Goal: (in a (app x y))
                                             (and (consp X)
                                                   (or (== a (first X))
  (in a (app x y))
                                                       (in a (rest X)))))
= { Def app, C3 }
  (in a (cons (first x) (app (rest x) y)))
= { Def in, car-cdr-cons axioms }
  (or (equal a (first x)) (in a (app (rest x) y)))
= { D3, PL }
  t
```

Equational Reasoning is Easy Peasy Lemon Squeezy

Fermat's last theorem:

For all positive integers x, y, z and n, where n > 2, $x^n + y^z \neq z^n$

I have a truly marvelous proof of this proposition which this margin is too narrow to contain.

Fermat, 1637

It took 357 years for a correct proof to be found (by Andrew Wiles in 1995).

Fermat's Last Theorem

For all positive integers x, y, z and n, where n > 2, $x^n + y^z \neq z^n$

We can use Fermat's last theorem to construct a conjecture that is hard to prove.

```
(definec fermat (x :pos y :pos z :pos n :pos) :bool
  :ic (> n 2)
  (!= (+ (expt x n) (expt y n)) (expt z n)))
(property (x :pos y :pos z :pos n :pos)
 (=> (> n 2)
      (fermat x y z n))
OR we can define a function that is hard to admit:
(defdata true t)
(definec fermat (x :pos y :pos z :pos n :pos) :true
  :ic (> n 2)
  (!= (+ (expt x n) (expt y n)) (expt z n)))
```

We can play this trick with any conjecture.

Even restricted to integers, =, +, *, the validity problem is undecidable, so equational reasoning can be hard.

Questions?

