
Lecture 24

Pete Manolios

Northeastern

Computer-Aided Reasoning, Lecture 24

Slides by Pete Manolios for CS4820

Subsumption & Replacement
Let C, D be propositional clauses; C≤D, C subsumes D if C⊆D, therefore
C⇒D and we can remove D and subsumed clauses

Let C, D be FO clauses; C≤D, C subsumes D if ∃σ s.t. Cσ⊆D (matching!),
hence C⇒D and we so can remove D and subsumed clauses

Theorem: For FO clauses, if C≤C’ and D≤D’ then any U-resolvent of C’ and
D’ is subsumed by C, D or a U-resolvent of C and D.

Corollary: If C is derivable by U-resolution, then ∃C’ derivable by U-
resolution s.t. C’≤C and no clause is subsumed by any of its ancestors

Corollary: If a U-resolution of a non-tautologous conclusion involves a
tautology, ∃ a U-resolution proof that does not use any tautologies

So, we can discard tautologies and subsumed clauses

Forward deletion: discard generated clauses that are subsumed by an
existing clause

Backward replacement: if a generated clause subsumes an existing
clause replace the existing clause with the newly generated one

Slides by Pete Manolios for CS4820

Positive, Negative, Semantic Resolution
Positive resolution (Robinson): Refutation completeness is preserved if we
restrict resolution so that one of the clauses contains only positive literals

Hint: suppose that there are no positive clauses (all literals are positive),
then the problem is SAT if you assign all atoms false; if there only
positive clauses assign all atoms true; see proof in book

Similarly for U-resolution

This cuts down the search space dramatically

This plays well with subsumption and replacement

Negative resolution: Require negative clauses (instead of positive clauses)

More generally we have semantic resolution: if S is an Unsat set of FO
clauses and I is an interpretation of the symbols used in S, there is a U-
resolution proof of Unsat(S) where each U-resolution step involves a clause
that is not true in I

Positive resolution is a special case where I assigns false to all atoms

Slides by Pete Manolios for CS4820

Set of Support
Partition T the input clauses into two disjoint sets, S, the set of support of T
and the unsupported clauses V. Restrict U-resolution so that no two
clauses in V are resolved together.

Theorem: Let T be an Unsat set of clauses and let S be a subset of T where
T\S is Sat; then there is a U-resolution proof of Usat(T) with set of support S

Idea: focus U-resolution on finding resolvents that contribute to the solution

For example say A is a set of standard mathematical axioms

You want to prove B⇒C

Using U-resolution you will want to derive the empty clause from A, B, ¬C

Since Sat(A) you can choose B, ¬C as the set of support

Since A, B are Sat (presumably), you can choose ¬C as the set of support

Suppose ¬C is the only negative clause, then similar to negative resolution,
but negative resolution is more restrictive; however, set of support often
makes up for this by finding shorter proofs

Slides by Pete Manolios for CS4820

Dealing with Equality
Plan for a FO validity checker w/=: Given FO φ, negate & Skolemize to get
universal ψ s.t. Valid(φ) iff Unsat(ψ). Convert ψ into equivalent CNF 𝓚.
Generate ψ* in expanded language without = s.t. Sat(ψ) iff Sat(ψ*). Use U-
Resolution on ψ*.

To go from ψ to ψ*

Introduce a new binary relation symbol, E
Replace t1=t2 with E(t1, t2) everywhere in ψ

Force E to be an equivalence relation by adding clauses

{E(x,x)}, {¬E(x,y), E(y,x)}, {¬E(x,y), ¬E(y,z), E(x,z)}

Force E to be a congruence (RAP: Equality Axiom Schema for Functions)

{¬E(x1,y1),…,¬E(xn,yn), E(f(x1,…,xn), f(y1,…,yn))} for every n-ary f in ψ

{¬E(x1,y1),…,¬E(xn,yn), ¬R(x1,…,xn), R(y1,…,yn)} for every n-ary R in ψ

Clauses for E are positive Horn (see later slides)!

Slides by Pete Manolios for CS4820

Universal Horn Formulas
A formula is a universal Horn formula if it is logically equivalent to a
conjunction of formulas of the following form, where 𝜑, 𝜑i, are atomic
⟨∀x1, …, xn φ⟩
⟨∀x1, …, xn φ1 ∧ ⋯ ∧ φm ⇒ φ⟩
⟨∀x1, …, xn ¬φ1 ∨ ⋯ ∨ ¬φm⟩

Let Φ be a set of universal Horn sentences s.t. Sat(Φ); let Φ+ be the subset
of positive sentences in Φ; let ψi be atomic over vars x1,…,xn; then

Φ ⊨ (ψ0 !"#"!"ψk)σ iff Φ+ ⊨ (ψ0 !"#"!"ψk)σ if ψiσ is ground for all i
Φ ⊨ ⟨∃x1,…,xn ψ0 !"#"!"ψk⟩ iff Φ+ ⊨ ⟨∃x1,…,xn ψ0 !"#"!"ψk⟩

The above is a key insight that often allows us to restrict attention to
positive universal Horn formulas

For propositional logic, Sat for Horn formulas is in P!

positive
positive
negative

differs from positive
resolution!

we’ll use pos/neg in this
sense for rest of lecture

Slides by Pete Manolios for CS4820

Free Models
Herbrand universe, H, of FO language L is the set of all ground terms of L,
except that if L has no constants, we add c to make the universe non-empty

Let Φ be a set of universal Horn sentences over L s.t. Sat(Φ)

There is ℐΦ, an interpretation for Φ over H s.t. ℐΦ ⊨ φ iff Φ ⊨ φ for all atomic φ

Note: if Φ ⊨ t1=t2 then ℐΦ ⊨t1=t2

Note: If Φ ⊨ R(t1, …, tn) then ℐΦ ⊨R(t1, …, tn)

Note: If neither Φ ⊨ R(t1, …, tn) nor Φ ⊨ ¬R(t1, …, tn) then ℐΦ ⊨¬R(t1, …, t2)

So ℐΦ, is minimal (free): it only contains positive atomic information

There is a homomorphism between ℐΦ and any other model of Φ

We have reduced Φ ⊨ φ to ℐΦ ⊨ φ

Instead of checking if every interpretation of Φ satisfies φ

We only need to check a single, minimal interpretation

Enables us to find solutions to queries in a systematic way

Basis for logic programming

Slides by Pete Manolios for CS4820

Logic Programming
Let 𝕻 be a set of positive clauses and let N be a negative clause

A sequence N0, …, Nk of negative clauses is a UH-resolution from 𝕻 and N
iff ∃ P0, …, Pk-1 ∈ 𝕻 s.t. N0 = N and Ni+1 is a U-resolvent of Pi and Ni for i < k
A negative clause N’ is UH-derivable from 𝕻 and N iff ∃ a UH-resolution
N0, …, Nk from 𝕻 and N with N’=Nk

σ1

P0 N=N0

N1

σ2

P1

…
Nk-1

σk

Pk-1

N’=Nk

Notice that this is a
very restricted kind

of U-resolution

Slides by Pete Manolios for CS4820

Logic Programming

Let 𝓚 be a set of clauses, UHRes(𝓚)=𝓚∪{N | N is a negative clause and ∃ a
positive/negative P, N’∈ 𝓚 s.t. N is a U-resolvent of P and N’}

UHRes0(𝓚)=𝓚

UHResn+1(𝓚)=UHRes(UHResn(𝓚))

UHResω(𝓚)=∪n∈ωUHResn(𝓚)

Standard recursive definition
on the naturals

Standard recursive definition
with limit ordinals

Let 𝕻 be a set of positive clauses and let N be a negative clause

A sequence N0, …, Nk of negative clauses is a UH-resolution from 𝕻 and N
iff ∃ P0, …, Pk-1 ∈ 𝕻 s.t. N0 = N and Ni+1 is a U-resolvent of Pi and Ni for i < k
A negative clause N’ is UH-derivable from 𝕻 and N iff ∃ a UH-resolution
N0, …, Nk from 𝕻 and N with N’=Nk

Slides by Pete Manolios for CS4820

Logic Programming
Theorem: Let Φ be a set of positive universal Horn sentences, 𝕻 = 𝓚(Φ), ψi

atomic, ⟨∃x1,…,xn ψ0 !"#"!"ψm⟩ a sentence and N = {¬ψ0, …, $ψm}. Then:

Φ ⊨ ⟨∃x1,…,xn ψ0 !"#"!"ψm⟩ iff ∅ is UH-derivable from 𝕻 and N

Given such a UH-derivation, with σ1, …, σk, Φ ⊨ (ψ0 !"#"!"ψm)σk…σ1

If Φ ⊨ (ψ0 !"#"!"ψm)τ, then there is a UH-derivation with (σk…σ1) ≤ τ

So, we can find all solutions to the existential!

Recall

𝓚(Φ)=clauses of Φ

σ1

P0 N= {¬ψ0, …, $ψn}

N1

σ2

P1

…
Nk-1

σk

Pk-1

∅

Slides by Pete Manolios for CS4820

Logic Programming Example

σ1 = f(x), f(u) ← v, y

∅

Φ = {⟨∀x, y P(x, y, c) ⇒ R(y, g(f(x)))⟩, ⟨∀x, y P(f(x), y, c)⟩} ⊧ ⟨∃x, y R(f(x), g(y))⟩

{¬P(u, v, c), R(v, g(f(u)))} {¬R(f(x), g(y))}

{¬P(u, f(x), c)}{P(f(v), y, c)}

σ2 = f(x), f(v) ← y, u

Recall: given a UH-derivation, with σ1, …, σk, Φ ⊨ (ψ0 !"#"!"ψm)σk…σ1

So, the following hold

Φ ⊧ R(f(x), g(f(f(v)))) Φ ⊧ ⟨∀x, v R(f(x), g(f(f(v))))⟩

And we have a family of solutions

Slides by Pete Manolios for CS4820

Prolog
One of the most popular logic programming languages is Prolog

Given a set of Horn clauses and a query, find solutions

AppRules = (App nil L L), (App (cons h T), L, (cons h A)) :- App(T,L,A)

AppRules, (App ’(1 2), ’(3 4), Z) → Z=’(1 2 3 4)

AppRules, (App ’(1 2), Y, ’(1 2 3 4)) → Y=’(3 4)

AppRules, (App X, Y, ’(1 2 3 4)) → X=nil, Y=’(1 2 3 4), … (more solutions)

An example of declarative programming

Prolog searches in a way that may lead to looping, provides support to
control search, etc.

This is implication, ie, X :- Y is Y ⇒ X

