Lecture 24

Pete Manolios
Northeastern

Computer-Aided Reasoning, Lecture 24

Subsumption & Replacement

» Let C, D be propositional clauses; C<D, C subsumes D if CcD, therefore
C=D and we can remove D and subsumed clauses

» Let C, D be FO clauses; C<D, C subsumes D if 30 s.t. CocD (matching!),
hence C=D and we so can remove D and subsumed clauses

» Theorem: For FO clauses, if C<C’ and D<D’ then any U-resolvent of C’ and
D’ is subsumed by C, D or a U-resolvent of C and D.

» Corollary: If C is derivable by U-resolution, then 3C’ derivable by U-
resolution s.t. C’<C and no clause is subsumed by any of its ancestors

» Corollary: If a U-resolution of a non-tautologous conclusion involves a
tautology, 3 a U-resolution proof that does not use any tautologies

» S0, we can discard tautologies and subsumed clauses

» Forward deletion: discard generated clauses that are subsumed by an
existing clause

» Backward replacement: if a generated clause subsumes an existing
clause replace the existing clause with the newly generated one

Slides by Pete Manolios for CS4820

Positive, Negative, Semantic Resolution

» Positive resolution (Robinson): Refutation completeness is preserved if we
restrict resolution so that one of the clauses contains only positive literals

» Hint: suppose that there are no positive clauses (all literals are positive),
then the problem is SAT if you assign all atoms false; if there only
positive clauses assign all atoms true; see proof in book

> Similarly for U-resolution
» This cuts down the search space dramatically

» This plays well with subsumption and replacement
» Negative resolution: Require negative clauses (instead of positive clauses)

» More generally we have semantic resolution: if S is an Unsat set of FO
clauses and / is an interpretation of the symbols used in S, there is a U-
resolution proof of Unsat(S) where each U-resolution step involves a clause
that is not true in /

» Positive resolution is a special case where [assigns false to all atoms

Slides by Pete Manolios for CS4820

Set of Support

> Partition T the input clauses into two disjoint sets, S, the set of support of T
and the unsupported clauses V. Restrict U-resolution so that no two
clauses in V are resolved together.

» Theorem: Let T be an Unsat set of clauses and let S be a subset of T where
I\S is Sat; then there is a U-resolution proof of Usat(7) with set of support S

» ldea: focus U-resolution on finding resolvents that contribute to the solution

» For example say A is a set of standard mathematical axioms
» You want to prove B=C

» Using U-resolution you will want to derive the empty clause from A, B, -C
» Since Sat(A) you can choose B, =C as the set of support
» Since A, B are Sat (presumably), you can choose —C as the set of support

» Suppose —C is the only negative clause, then similar to negative resolution,
but negative resolution is more restrictive; however, set of support often
makes up for this by finding shorter proofs

Slides by Pete Manolios for CS4820

Dealing with Equality

» Plan for a FO validity checker w/=: Given FO ¢, negate & Skolemize to get
universal P s.t. Valid(¢) iff Unsat(p). Convert | into equivalent CNF %' .

Generate * in expanded language without = s.t. Sat(p) iff Sat(p*). Use U-
Resolution on *.

» To go from to P*

P

P

B

ntroduce a new binary relation symbol, E
Replace ti=t2 with E(ts, to) everywhere in

-orce E to be an equivalence relation by adding clauses

* {EXX)} (-EWX.Y), Ely. X)), {~EX.y), ~E(y.2), E(x,2)}

> Force E to be a congruence (RAP: Equality Axiom Schema for Functions)

> {=E(X1,y1),...,mEXn,Yn), E(f(X1,...,Xn), f(y71,...,yn))} fOor every n-ary fin
> {=E(X1,y1),...,mEXn,yn), 7R(x1,...,Xn), R(y1,...,yn)} for every n-ary R in |

» Clauses for E are positive Horn (see later slides)!

Slides by Pete Manolios for CS4820

Universal Horn Formulas

» A formula is a universal Horn formula if it is logically equivalent to a
conjunction of formulas of the following form, where ¢, @i, are atomic

(Vxp, .05, @) positive differs from positive

(VX{, .0 X, 01 A AN@, = @) positive resolution!”
_ we’ll use pos/neg in this

(VXp, o0, 7@ Vo V g,,) negativeé sense for rest of lecture

» Let @ be a set of universal Horn sentences s.t. Sat(®); let ®+ be the subset
of positive sentences in @; let i be atomic over vars xi,...,xn; then

>OE= (oA AP)o iff O+ (PoA - A Py)o if Piois ground for all i
>@E Ax1,....Xn Po A APk iff OrEEX7,... X0 Yo A A D)

» The above is a key insight that often allows us to restrict attention to
positive universal Horn formulas

» For propositional logic, Sat for Horn formulas is in P!

Slides by Pete Manolios for CS4820

Free Models

» Herbrand universe, H, of FO language L is the set of all ground terms of L,
except that if L has no constants, we add ¢ to make the universe non-empty

> Let ®@ be a set of universal Horn sentences over L s.t. Sat(®)
» There is 7%, an interpretation for ® over H s.t. 7® = ¢ iff ® = ¢ for all atomic ¢

> Note: if @ = ti=t2 then 7% =t1=t>
> Note: If ® = R(t4, ..., tn) then 72 =R(t4, ..., tn)
> Note: If neither ® = R(t4, ..., th) nor ® = -R(t1, ..., tn) then 72 =-R(t4, ..., t2)
» S0 79, is minimal (free): it only contains positive atomic information
> There is a homomorphism between 7% and any other model of ©®
> We have reduced D =dpto 7 =

» Instead of checking if every interpretation of ® satisfies ¢
» We only need to check a single, minimal interpretation

» Enables us to find solutions to queries in a systematic way

» Basis for logic programming

Slides by Pete Manolios for CS4820

Logic Programming

> Let P be a set of positive clauses and let N be a negative clause

» A sequence Ny, ..., Nk of negative clauses is a UH-resolution from p and N
Iff 3 Po, ..., Pk-1€ P s.t. No= N and Ni;1 is a U-resolvent of Pi and N; for i < k

» A negative clause N’ is UH-derivable from P and N iff 3 a UH-resolution
No, ..., Nk from P and N with N’=Nj
Po N=No

Notice that this is a

very restricted kind A N
of U-resolution %

Pr-1 Ni-1
W
N’=Nk

Slides by Pete Manolios for CS4820

Logic Programming

> Let P be a set of positive clauses and let N be a negative clause
» A sequence Ny, ..., Nk of negative clauses is a UH-resolution from p and N
Iff 3 Po, ..., Pie P s.t. No= N and N7 is a U-resolvent of Pi and N; for i < k
» A negative clause N’ is UH-derivable from P and N iff 3 a UH-resolution
No, ..., Nk from P and N with N’=Nj

> Let # be a set of clauses, UHRes(#)=F u{N | N is a negative clause and 3 a
positive/negative P N’e # s.t. N is a U-resolvent of P and N’}

> UHReso(F)=F Standard recursive definition

on the naturals

> UHResn.1(#)=UHRes(UHResn(%)) Standard recursive definition

> UHResw(H)=UncwUHReSH(F) with limit ordinals

Slides by Pete Manolios for CS4820

Logic Programming s
K

(D)=clauses of ®
Theorem: Let ®@ be a set of positive universal Horn sentences, P = F' (D), Yi

atomic, <(3x7,....xn Yo A - A Pmy @ sentence and N = {=o, ..., "Pm}. Then:
> D= Ax1,....xn Po A - A Pmy iff @ is UH-derivable from P and N
» Given such a UH-derivation, with o4, ..., ok, ® = (o A - A Pm)Ok...OH

> If @ = (Po A -+ A Ym)T, then there is a UH-derivation with (ok...01) < T
» S0, we can find all solutions to the existential!

Po N= {-o, ..., "Yn}
\
P N+
\ A
Pk-1 Ni-1
\ 4
D

Slides by Pete Manolios for CS4820

Logic Programming Example

® = {(Vx,y P(x,y,0) = R(y, g(f(x)))), (Vx,y P(f(x),y,0))} F (Ix,y R(f(x), g(»)))
{ 2P, v,0), R(v, g(f(w)} 1R (), 8(V))}

N =00,) < v,y

PV, y, 0 {=P(u, f(x),c)}
0y :f(X),f(V) <Y, U

D

> Recall: given a UH-derivation, with o1, ..., ok, ® = (o A *** A Pm)Ok...O1
» So, the following hold

® F R(f(x), g(f(f () D F (Vx, v R(f(x), g(f(f(V))))

» And we have a family of solutions

Slides by Pete Manolios for CS4820

Prolog

> One of the most popular logic programming languages is Prolog

> Given a set of Horn clauses and a query, find solutions

> AppRu
> AppRu
> AppRu
> AppRu

This is implication, ie, X:-YisY = X
es = (App nil L L), (App (cons h T), L, (cons h A)) :- App(T,L,A)

es, (App’(12),’(34),2) — Z=(1234)
es, (App’(12),Y,’(1234)) = Y=(34)
es, (App X, Y, (123 4)) = X=nil, Y="(1 2 3 4), ... (more solutions)

» An example of declarative programming

» Prolog searches in a way that may lead to looping, provides support to
control search, etc.

Slides by Pete Manolios for CS4820

