
Lecture 23

Pete Manolios

Northeastern

Computer-Aided Reasoning, Lecture 23

Slides by Pete Manolios for CS4820

Unification for FOL
Let C be a clause; if we negate all literals in C, we get C-

A unifier for a clause C={l1,…,ln} is a unifier for {(l1,l2), (l2, l3), …, (ln-1,ln)}

Let C, D be clauses (assume there are no common variables since we can
rename vars). K is a U-resolvent of C, D iff there are non-empty C’⊆C, D’⊆D
s.t. σ is a unifier for C’∪D’- and K=(C\C’ ∪ D\D’)σ. Note |C’|, |D’| can be >1

C = {¬R(x), R(f(x))} D = {¬R(f(f(x))), P(x)}
⟨∀x (¬R(x) ∨ R(f(x))) ∧ (¬R(f(f(x))) ∨ P(x))⟩
⟨∀x ¬R(x) ∨ R(f(x))⟩ ∧ ⟨∀x ¬R(f(f(x))) ∨ P(x)⟩
⟨∀x ¬R(x) ∨ R(f(x))⟩ ∧ ⟨∀y ¬R(f(f(y))) ∨ P(y)⟩

corresponds to
equivalent to
equivalent to
corresponds to

C = {¬R(x), R(f(x))} D = {¬R(f(f(y)) ∨ P(y)}
so I will rename variables in clauses as I see fit

⟨∀x :: ϕ⟩ ∧ ⟨∀y :: ψ⟩ ≡ ⟨∀z :: ϕ
z
x

∧ ψ
z
y

⟩ where z is not free in LHS
Recall from the Prenex Normal Form algorithm (let z,y be x in the example)

Slides by Pete Manolios for CS4820

U-resolvent example
Let C be a clause; if we negate all literals in C, we get C-

A unifier for a clause C={l1,…,ln} is a unifier for {(l1,l2), (l2, l3), …, (ln-1,ln)}

Let C, D be clauses (assume there are no common variables since we can
rename vars). K is a U-resolvent of C, D iff there are non-empty C’⊆C, D’⊆D
s.t. σ is a unifier for C’∪D’- and K=(C\C’ ∪ D\D’)σ. Note |C’|, |D’| can be >1

C = {¬R(x), R(f(x))} D = {¬R(f(f(x))), P(x)}

σ = f(y) ← x
{¬R(f(y)), P(y)}

{¬R(x), R(f(x))} {¬R(f(f(y))), P(y)}

Slides by Pete Manolios for CS4820

U-resolvent example
Let C be a clause; if we negate all literals in C, we get C-

A unifier for a clause C={l1,…,ln} is a unifier for {(l1,l2), (l2, l3), …, (ln-1,ln)}

Let C, D be clauses (assume there are no common variables since we can
rename vars). K is a U-resolvent of C, D iff there are non-empty C’⊆C, D’⊆D
s.t. σ is a unifier for C’∪D’- and K=(C\C’ ∪ D\D’)σ. Note |C’|, |D’| can be >1

Try this: C = {¬S(c, x), ¬S(x, x)}, D = {S(x, x), S(c, x)}

σ = x ← y
{¬S(x, x), S(x, x)}

{¬S(c, x), ¬S(x, x)} {S(c, y), S(y, y)}

Tautology, so useless

One possible U-resolution step

Slides by Pete Manolios for CS4820

U-resolvent example
Let C be a clause; if we negate all literals in C, we get C-

A unifier for a clause C={l1,…,ln} is a unifier for {(l1,l2), (l2, l3), …, (ln-1,ln)}

Let C, D be clauses (assume there are no common variables since we can
rename vars). K is a U-resolvent of C, D iff there are non-empty C’⊆C, D’⊆D
s.t. σ is a unifier for C’∪D’- and K=(C\C’ ∪ D\D’)σ. Note |C’|, |D’| can be >1

Try this: C = {¬S(c, x), ¬S(x, x)}, D = {S(x, x), S(c, x)}

σ = x ← y
{¬S(x, x), S(x, x)}

{¬S(c, x), ¬S(x, x)} {S(c, y), S(y, y)}

σ = c ← y, x

{¬S(c, c), S(c, c)}

{¬S(c, x), ¬S(x, x)} {S(c, y), S(y, y)}

All are tautologies

(useless)

{¬S(c, c), S(c, c)}

{¬S(c, x), ¬S(x, x)} {S(c, y), S(y, y)}

σ = c ← y, x

{¬S(c, x), S(c, x)}

{¬S(c, x), ¬S(x, x)} {S(c, y), S(y, y)}

σ = x ← y

Slides by Pete Manolios for CS4820

U-resolvent example
Let C be a clause; if we negate all literals in C, we get C-

A unifier for a clause C={l1,…,ln} is a unifier for {(l1,l2), (l2, l3), …, (ln-1,ln)}

Let C, D be clauses (assume there are no common variables since we can
rename vars). K is a U-resolvent of C, D iff there are non-empty C’⊆C, D’⊆D
s.t. σ is a unifier for C’∪D’- and K=(C\C’ ∪ D\D’)σ. Note |C’|, |D’| can be >1

Try this: C = {¬S(c, x), ¬S(x, x)}, D = {S(x, x), S(c, x)}

{S(c, c)}

{¬S(c, x), ¬S(x, x)} {S(c, y), S(y, y)}

{¬S(c, c)}

{¬S(c, x), ¬S(x, x)} {S(c, y), S(y, y)}

∅

σ = c ← y, xσ = c ← y, x

σ = ι the identity substitution

Slides by Pete Manolios for CS4820

U-resolvent example
Let C be a clause; if we negate all literals in C, we get C-

A unifier for a clause C={l1,…,ln} is a unifier for {(l1,l2), (l2, l3), …, (ln-1,ln)}

Let C, D be clauses (assume there are no common variables since we can
rename vars). K is a U-resolvent of C, D iff there are non-empty C’⊆C, D’⊆D
s.t. σ is a unifier for C’∪D’- and K=(C\C’ ∪ D\D’)σ. Note |C’|, |D’| can be >1

Try this: C = {¬S(c, x), ¬S(x, x)}, D = {S(x, x), S(c, x)}

∅

{¬S(c, x), ¬S(x, x)} {S(c, y), S(y, y)}

σ = c ← y, x

¬⟨∃b ⟨∀x S(b, x) ≡ ¬S(x, x)⟩⟩

This is the Barber of Seville problem: Prove that there is no barber who
shaves all those, and those only, who do not shave themselves.

Slides by Pete Manolios for CS4820

Unification for FOL
Let C be a clause; if we negate all literals in C, we get C-

A unifier for a clause C={l1,…,ln} is a unifier for {(l1,l2), (l2, l3), …, (ln-1,ln)}

Let C, D be clauses (assume there are no common variables since we can
rename vars). K is a U-resolvent of C, D iff there are non-empty C’⊆C, D’⊆D s.t.
σ is a unifier for C’∪D’- and K=(C\C’ ∪ D\D’)σ. Note |C’|, |D’| can be >1

Lemma: Let C, D be clauses. Then

every resolvent of ground instances of C, D is a ground instance of a U-
resolvent of C, D

every ground instance of a U-resolvent of C, D is a resolvent of ground
instances of C, D

Let 𝓚 be a set of ground clauses, Res(𝓚)=𝓚∪{K | K is a resolvent of C,D∈𝓚}

Let 𝓚 be a set of FO clauses, URes(𝓚)=𝓚∪{K | K is a U-resolvent of C,D∈𝓚}

Let URes0(𝓚)=𝓚, UResn+1(𝓚)=URes(UResn(𝓚)), UResω(𝓚)=∪n∈ωUResn(𝓚)

Slides by Pete Manolios for CS4820

Unification for FOL
Let C, D be clauses (assume there are no common variables since we can
rename vars). K is a U-resolvent of C, D iff there are non-empty C’⊆C, D’⊆D
s.t. σ is a unifier for C’∪D’- and K=(C\C’ ∪ D\D’)σ. Note |C’|, |D’| can be >1

G(K) is the set of ground instances of K, G(𝓚) = ∪K∈𝓚 G(K)

Lemma: Resn(G(𝓚)) = G(UResn(𝓚)) and Resω(G(𝓚)) = G(UResω(𝓚))

Lemma: ∅∈Resω(G(𝓚)) iff ∅∈UResω(𝓚)

For Φ a set of ∀ formulas in CNF: G(𝓚(Φ))=𝓚(G(Φ)), where 𝓚(Φ) is set-
representation of CNF

Theorem: For Φ a set of ∀ formulas in CNF, Φ is Sat iff ∅∉UResω(𝓚(Φ))

Proof: Φ is Sat iff G(Φ) is (propositionally) Sat iff 𝓚(G(Φ)) is Sat iff
G(𝓚(Φ)) is Sat iff ∅∉ResωG(𝓚(Φ)) iff ∅∉UResω𝓚(Φ)

Slides by Pete Manolios for CS4820

FOL Checking with Unification
FO validity checker: Given FO φ, negate & Skolemize to get universal ψ s.t.
Valid(φ) iff UNSAT(ψ). Let G be the set of ground instances of ψ (possibly
infinite, but countable). Let G1, G2 …, be a sequence of finite subsets of G
s.t. ∀g⊆G,|g|<ω, ∃n s.t. g⊆Gn. ∃n s.t. Unsat Gn iff Unsat ψ (and Valid φ)

Unification: intelligently instantiate formulas

FO validity checker w/ unification: Given FO φ, negate & Skolemize to get
universal ψ s.t. Valid(φ) iff UNSAT(ψ). Convert ψ into equivalent CNF 𝓚.
Then, Unsat ψ iff ∅∈UResω(𝓚) iff ∃n s.t. ∅∈UResn(𝓚).

We say that U-resolution is refutation-compete: If Unsat(𝓚) then there is a
proof using U-resolution (i.e., you can derive ∅), so we have a semi-
decision procedure for validity.

Slides by Pete Manolios for CS4820

FOL Checking Examples
FO validity checker w/ unification: Given FO φ, negate & Skolemize to get
universal ψ s.t. Valid(φ) iff UNSAT(ψ). Convert ψ into equivalent CNF 𝓚.
Then, Unsat(ψ) iff ∅∈UResω(𝓚) iff ∃n s.t. ∅∈UResn(𝓚).

σ = x ← z

𝒦 = {{R(x, y), Q(x)}, {¬R(x, g(x))}, {¬Q(y)}}

{(R(x, y), Q(x)} {¬Q(z)}

{(R(x, y)} {¬R(z, g(z))}

∅

ϕ = ¬⟨∀x, y (R(x, y) ∨ Q(x)) ∧ ¬R(x, g(x)) ∧ ¬Q(y)⟩

σ = x ← z, g(x) ← y

Let C, D be clauses (w/ no common
variables). K is a U-resolvent of C, D
iff there are non-empty C’⊆C, D’⊆D
s.t. σ is a unifier for C’∪D’- and
K=(C\C’ ∪ D\D’)σ.

Recall

ψ = ⟨∀x, y (R(x, y) ∨ Q(x)) ∧ ¬R(x, g(x)) ∧ ¬Q(y)⟩

So, Unsat(ψ) and Valid(φ)

