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Unification for FOL

» Let C be a clause; if we negate all literals in C, we get C-
> A unifier for a clause C={l1,...,In} is a unifier for {(/1,l2), (I2, I3), ..., (In-1,In)}

> Let C, D be clauses (assume there are no common variables since we can
rename vars). K is a U-resolvent of C, D iff there are non-empty C’cC, D’cD

s.t. o is a unifier for C’'uD’- and K=(C\C’ u D\D’)o. Note |C’|, |D’| can be >1
C={7Rx),R(f(x)} D= {=R(f(f(x)), P(x)} corresponds to
(Vx (=R VR(f) A (<R(f(f(x) vV P(x)) ~ equivalent to

(¥x =R() VR(F)) A (Vx ~R(f(f(x)) v P(x))  equivalent to

(Vx ~R(x) VR(f()) A (Vy ~R(f(f()) VP(y))  corresponds to

C = {7RX),R(f(x)} D= {=R(f(f(y)V P}

so | will rename variables in clauses as | see fit

Recall from the Prenex Normal Form algorithm (let z,y be x in the example)

(Vx ) AN(Vy:iy) = (Vz::gbi/\wi) where z is not free in LHS
X Y
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U-resolvent example

» Let C be a clause; if we negate all literals in C, we get C-
> A unifier for a clause C={l1,...,In} is a unifier for {(/1,l2), (I2, I3), ..., (In-1,In)}

> Let C, D be clauses (assume there are no common variables since we can
rename vars). K is a U-resolvent of C, D iff there are non-empty C’cC, D’cD

s.t. o is a unifier for C’'uD’- and K=(C\C’ u D\D’)o. Note |C’|, |D’| can be >1

C={=RX),R(f(x)} D= {~R(f(f(x))), P(x)}
[=Rx),R(f(x))} {~R(f(SM)),P(y)}

\%zf()’) — X

{7 R(f(), P(y)}
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U-resolvent example

» Let C be a clause; if we negate all literals in C, we get C-
> A unifier for a clause C={l1,...,In} is a unifier for {(/1,l2), (I2, I3), ..., (In-1,In)}

> Let C, D be clauses (assume there are no common variables since we can
rename vars). K is a U-resolvent of C, D iff there are non-empty C’cC, D’cD

s.t. o is a unifier for C’'uD’- and K=(C\C’ u D\D’)o. Note |C’|, |D’| can be >1
> Try this: C = {~S(c,x),~S(x,x)}, D = {S(x, x), S(c,x)}

One possible U-resolution step

{78(c, x),2SCe, x)}  {185(c, ), S(y,y)}

\%:x(—y

10, X), 5(x, X))

Tautology, so useless
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U-resolvent example

» Let C be a clause; if we negate all literals in C, we get C-
> A unifier for a clause C={l1,...,In} is a unifier for {(/1,l2), (I2, I3), ..., (In-1,In)}

> Let C, D be clauses (assume there are no common variables since we can
rename vars). K is a U-resolvent of C, D iff there are non-empty C’cC, D’cD

s.t. o is a unifier for C’'uD’- and K=(C\C’ u D\D’)o. Note |C’|, |D’| can be >1
> Try this: C = {~S(c,x),~S(x,x)}, D = {S(x, x), S(c,x)}
{ _'S(C,.X), _'S(.X,X)} {S(C,y), S(y,y)} { _'S(C,.X), _'S(.X,X)} {S(Cay)a S(}’»Y)}

\%z)C(—y \/Gzcey,x

{=S(x, x), S(x, x)} { 78(c, ), 5(c, )}

{28(c, %), =S(x, )} {S(e,»),SG. 0} {28, %), 285@, 0} 156, ), 500, 1)

\%C@y,x %(_y

L 5(¢, ), 5(c, 0)] All are tautologies 1 73(¢, %), 5(¢, )}

(useless)
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U-resolvent example

» Let C be a clause; if we negate all literals in C, we get C-
> A unifier for a clause C={l1,...,In} is a unifier for {(/1,l2), (I2, I3), ..., (In-1,In)}

> Let C, D be clauses (assume there are no common variables since we can
rename vars). K is a U-resolvent of C, D iff there are non-empty C’cC, D’cD

s.t. o is a unifier for C’'uD’- and K=(C\C’ u D\D’)o. Note |C’|, |D’| can be >1
> Try this: C = {~S(c,x),~S(x,x)}, D = {S(x, x), S(c,x)}
{=S(c,x),~S(x,x)}  {S(,y),S5(y,y)} {780, x), 28C,x)} {50, y),5(,y)}

\%:C%y,x \/Gzcey,x

{S(c,c)} {8(c, o)}
Wdentity substitution
%
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U-resolvent example

» Let C be a clause; if we negate all literals in C, we get C-
> A unifier for a clause C={l1,...,In} is a unifier for {(/1,l2), (I2, I3), ..., (In-1,In)}

> Let C, D be clauses (assume there are no common variables since we can
rename vars). K is a U-resolvent of C, D iff there are non-empty C’cC, D’cD

s.t. o is a unifier for C’'uD’- and K=(C\C’ u D\D’)o. Note |C’|, |D’| can be >1
> Try this: C = {~S(c,x),~S(x,x)}, D = {S(x, x), S(c,x)}

{8(c,x),2SCe,x)} 180, y), Sy, y)}

\%zce)},x

%)

> This is the Barber of Seville problem: Prove that there is no barber who
shaves all those, and those only, who do not shave themselves.

=(3b (Vx S(b,x) = =S(x,x)))

Slides by Pete Manolios for CS4820



Unification for FOL

» Let C be a clause; if we negate all literals in C, we get C-
> A unifier for a clause C={l1,...,In} is a unifier for {(/1,2), (2, I3), ..., (In-1,In)}

» Let C, D be clauses (assume there are no common variables since we can
rename vars). K is a U-resolvent of C, D iff there are non-empty C’cC, D’cD s.t.

o is a unifier for C’'uD™~ and K=(C\C’ u D\D’)a. Note |C’|, |D’| can be >1
» Lemma: Let C, D be clauses. Then

» every resolvent of ground instances of C, D is a ground instance of a U-
resolvent of C, D

» every ground instance of a U-resolvent of C, D is a resolvent of ground
instances of C, D

> Let K be a set of ground clauses, Res(#)=F% u{K | K is a resolvent of C,De %}
> Let K be a set of FO clauses, URes(%#)=F u{K | K is a U-resolvent of C,De %}
> Let UReso(H)=F , UResn:+1(FH)=URes(UResn(F)), UResu(F)=uncwUReSH(F)
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Unification for FOL

» Let C, D be clauses (assume there are no common variables since we can

rename vars). K is a U-resolvent of C, D iff there are non-empty C’cC, D’cD
s.t. o is a unifier for C’'uD’- and K=(C\C’ u D\D’)a. Note |C’|, |[D’| can be >1

» G(K) is the set of ground instances of K, G(#) = ukes G(K)

P

P

P

L emma: Resn(G(HF)) = G(UResn(F)) and Resw(G(F)) = G(UResy(H))
| emma: @cResw(G(XK)) iff dcUResw(F)

~or @ a set of v formulas in CNF: G(F# (D)) =% (G(®D)), where F (D) is set-

representation of CNF

» Theorem: For @ a set of v formulas in CNF, © is Sat iff @zUResw(F (D))

» Proof: @ is Sat iff G(®) is (propositionally) Sat iff #(G(D)) is Sat iff
G(F (D)) is Sat iff 2¢ResuG(F (D)) iff a2URes,FZ (D)
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FOL Checking with Unification

» FO validity checker: Given FO ¢, negate & Skolemize to get universal  s.t.
Valid(o) iff UNSAT(Y). Let G be the set of ground instances of | (possibly
infinite, but countable). Let G1, G2 ..., be a sequence of finite subsets of G
s.t. vgcG,|g|<w, 3n s.t. g<Gn. 3n s.t. Unsat G, iff Unsat ¢ (and Valid ¢)

» Unification: intelligently instantiate formulas

» FO validity checker w/ unification: Given FO ¢, negate & Skolemize to get
universal P s.t. Valid(o) iff UNSAT(p). Convert ¢ into equivalent CNF %'.

Then, Unsat V iff @eUResw(F) iff an s.t. aeUResn(H).

» We say that U-resolution is refutation-compete: If Unsat(%#’) then there is a

proof using U-resolution (i.e., you can derive @), so we have a semi-
decision procedure for validity.
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FOL Checking Examples

» FO validity checker w/ unification: Given FO ¢, negate & Skolemize to get
universal P s.t. Valid(o¢) iff UNSAT()). Convert ¢ into equivalent CNF %#'.

Then, Unsat(p) iff @aeUResy(H) iff an s.t. aeUResn(F).
¢ =(Vx,y (R(x,y) VO(X) A 7R(x,8(x)) A =Q())

p = (Vx,y (R(x,y) VOX) A R, gx) A ~QO())
FZ = R, y), Q) }, { 7R(x, g(0)) }, { 7O} }

L(R(x, y), Q) } 1 0@)} Let C, D be clauses (w/ no common
C=X 7 variables). K is a U-resolvent of C, D
((RCE,Y)) (=R(z, 2(2)) iff there are non-empty C’'cC, D’cD
s.t. o is a unifier for C’'uD’- and

c=x<278x) <y K=(C\C’ u D\D’)o.
& Recall
So, Unsat(p) and Valid(d)
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