Lecture 22

Pete Manolios
Northeastern

Computer-Aided Reasoning, Lecture 22

Unification Algorithm Soundness

» Algorithm: Nondeterministic transition system based on the following rules
> Delete {t=t} u S =S
» Decompose {f(t7, ..., tn) = f(S1, ..., Sn)} w S = {t1=S1, ..., th=Sn} U S
»QOrient{t=x} v S = {x=t} U S, iftis not a variable
> Eliminate {x=t} v S = {x=t} U S|t«x, if xeVars(S) - Vars(t)
> If V= T then U(V)=U(T): Easy: delete, decompose, orient;
> Let oeU(V), Y = x=t, 6 = t<x; note 6=(Y)!
> Recall Lemma: Y is in solved form and ocU(Y), then o=0Y!
> Apply lemma to x=t (solved form), 0=00 (since xo ={ocU(Y)} to = {t=x0} x00)
> oeU(V) = ceU({x=t}uS) = xo=to A ceU(S) = xo=to A 08€U(S) =
xo=to A 0eU(S0) = oeU({x=t} u SO) = oeU(T)
» Soundness: If Unify returns o, then o is an idempotent mgu of S
» We showed that Unify does not change unifiers
» By previous lemma: if S is in solved form, then S is an idempotent mgu

Slides by Pete Manolios for CS4820

Unification Algorithm Completeness

» Algorithm: Nondeterministic transition system based on the following rules
»Delete {t=t} u S =S
> Decompose {f(t7, ..., tn) = f(S1, ..., Sn)} w S = {t1=S71, ..., th=Sn} U S
»QOrient {t=x} vS = {x=t} U S, iftis not a variable
> Eliminate {x=t} v S = {x=t} U S|t«x, if xeVars(S) - Vars(t)
» Completeness: If S is solvable, then Unify(S) does not fail
» Lemmas
»f(...) =g(...) has no solution if f 2 g
» x=t, where x= t and xeVars(t) has no solution (|xo| < |to| for all o)

» Proof: If S is solvable and in normal form wrt =, then S is in solved form. S

cannot contain pairs of form f(...) = f(...) (decompose) or f(...) = g(...)
(lemma) or x=x (delete) or t=x where t is not a var (orient), so all equations
are of form x=t where x ¢ Vars(t) (lemma). Also x cannot occur twice in S

(eliminate), so S is in solved form.

Slides by Pete Manolios for CS4820

Unification Algorithm Improvements

» Algorithm: Nondeterministic transition system based on the following rules
> Delete {t=t} u S =S
> Decompose {f(t7, ..., tn) = f(S1, ..., Sn)} w S = {t1=S71, ..., th=Sn} U S
»QOrient {t=x} vS = {x=t} U S, iftis not a variable
> Eliminate {x=t} v S = {x=t} U S|t«x, if xeVars(S) - Vars(t)
> Clash {f(ts, ..., tn) = 9(S1, ..., Sm)} u S = Liffzg
» Occurs-Check {x=t} w S = 1 if xeVars(t) Ax #t

» This is justified by the lemmas used for completeness

>f(...) =g(...) has no solution if fz g
» x=t, where x= t and xeVars(f) has no solution (|xo| < |to| for all o)

» Early termination when 3 no solution, saving (how much?) time

Slides by Pete Manolios for CS4820

Complexity of Unification

» Algorithm: Nondeterministic transition system based on the following rules
»Delete {t=t} u S =S
» Decompose {f(t7, ..., tn) = f(S1, ..., Sn)} v S = {t1=S1, ...,.sn=th} U S
»QOrient{t=x}vS = {x=t} US, iftis not a variable
> Eliminate {x=t} v S = {x=t} U S|t«x, if xeVars(S) - Vars(t)
> Exponential blow up: {(x1=f(xo0,X0)), Xo=Ff(x1,x1), X3=f(X2,X2), ..., Xn=F(Xn-1,Xn-1)}
» Notice that the output is exponential
» Can we do better?
» Yes, by using a dag to represent terms and returning a dag
> General idea: operate on a concise representation of problem
» BDDs are concise representations of truth tables, decision trees, etc
» Model checking searches an implicitly given graph (transition system)

Slides by Pete Manolios for CS4820

History of Unification

» What we have studied is syntactic, first-order unification
» syntactic: substitutions should make terms syntactically equal
» equational unification: unification modulo an equational theory
» eg for commutative 7, f(x,f(x,x)) = f(f(x,x),x) is E-unifiable not syntactically unifiable
» first-order: no higher-order variables (no variables ranging over functions)
» Herbrand gave a nondeterministic algorithm in his 1930 thesis
» Robinson (1965) introduced FO theorem proving using resolution, unification
» Required exponential time & space

» Robinson (1971) & Boyer-Moore (1972): structure sharing algorithms that were space
efficient, but required exponential time

» Venturini-Zilli (1975): reduction to quadratic time using marking scheme

» Huet (1976) worked on higher-order unification led to na(n) time: almost linear
Robinson also discovered this algorithm

» Paterson and Wegman (1976) linear time algorithm
> Martelli and Montanari (1976) linear time algorithm based on Boyer-Moore

Slides by Pete Manolios for CS4820

Unification Applications

» First-order theorem proving
» Matching (ACL2) is a special case: given s,t find o s.t. so=t
» Prolog
» Higher-order theorem proving
» Undecidable for second-order logic
» Natural language processing
» Unification-based grammars
» Equational theories
» Commutative, Associative, Distributive, etc
» Term rewrite systems
» Type inference (eg ML)
» Logic programming
» Machine learning: generalization is a dual of unification

Slides by Pete Manolios for CS4820

