Lecture 21

Pete Manolios
Northeastern

Computer-Aided Reasoning, Lecture 21

Unification Basics

» Unification Problem: Given a set of pairs of terms S = {(s1,t1), ..., (Sn,tn)} @
unifier of S is a substitution o such that si|o = ti|jo (we’ll write sio = t0)

> U(S) is the set of all unifiers of S; notice that if o is a unifier, so is Tc0
» 0 is more general than T, 0 < T, iff T = 60 (6°0) for some substitution 6
» < is a preorder; let 0 be the identify for reflexivity

> transitivity: if o <1, T< 0 thent=0680, 0 =yt =Yy(d0) = (yO)O

>0 ~TIiff o < T, T< 0. Notice that if o=x+Vy, T=ye«Xx,theno-~ T

» 0 ~ T iff there is a renaming (bijection on Vars) 0 s.t. 0 = 0T
» A most general unifier (mgu) is o e U(S) s.t. forall Te U(S),o<T

> What is an mgu for x=y? x«y? yex? zeX, zey? yeX, Wz, ZzwW?
> A substitution is idempotent if 0o = o (rules out last case above)

» 0 is idempotent iff Domain(o) is disjoint from Vars(Range(o))
> If a unification problem has a solution, then it has an idempotent mgu
> We want an algorithm that finds an mqgu, if a unifier exists

Slides by Pete Manolios for CS4820

Unification Algorithm

> S = {(x1,t1), ..., (xn,tn)} is in solved form if the x; are distinct variables and don’t

occur in any of the ti. Then Sl= {t1xy, ..., th «Xn}

> |If S is in solved form and ceU(S), then 0=0S | (g, S| agree on all vars)

> If S is in solved form, then S is an idempotent mgu

» Algorithm: Nondeterministic transition system based on the following rules

» Delete {t=t} v S = S useful way of thinking about algorithms: SMT/IMT
> Decompose {f(t7, ..., tn) = f(S1, ..., Sn)} v S = {t1=S1, ..., th=Sn} U S
»QOrient{t=x} vS = {x=t} U S, iftis not a variable

> Eliminate {x=t} v S = {x=t} U S|t«x, if xeVars(S) - Vars(t)

> Unify(S) = apply rules nondeterministically; if solved return S, else fail
> Try it with: {(x, f(@)), (9(x,x), g(x.y))}

Slides by Pete Manolios for CS4820

Unification Algorithm

» Algorithm: Nondeterministic transition system based on the following rules
»Delete {t=t} u S =S
> Decompose {f(t1, ..., tn) = f(S7, ..., Sn)} v S = {t1=s1, ...,th=Sn} U S
»QOrient {t=x} vS = {x=t} U S, iftis not a variable
> Eliminate {x=t} v S = {x=t} U S|t«x, if xeVars(S) - Vars(t)

x=f(a), g(x,x)=g(x,y) = decompose what other rules can | use?
x=f(a), x=x, x=y — delete can’t use eliminate on x=x; why?
x=f(a), x=y — eliminate x ¢an’t use orient on x=y; why?
. can eliminate using x=f(a)
y=f(a), x=y — eliminate y
y=f(a), x=f(a) — return S|
> Try it with: {(x, fy), (v, 9))}

(P(f(w), fly)), Plx, flg(u))), (Px.u), P(v,g(v))}
(fla,b,9(x,x),9(y.y).2), flg(v.,v).g(@.a).y.z,b));

Slides by Pete Manolios for CS4820

n:
> Try it with: {
> Try it with: {

Unification Algorithm Termination

» Algorithm: Nondeterministic transition system based on the following rules
»Delete {t=t} u S =S
> Decompose {f(ti, ..., tn) = f(S1, ..., Sn)} v S = {ti=s7, ...,th=Sn} U S
»QOrient{t=x} v S = {x=t} U S, iftis not a variable
> Eliminate {x=t} v S = {x=t} U S|t«x, if xeVars(S) - Vars(t)

» Termination: our measure function will be on ordinals (infinite numbers)

» 0,1, 2, ..., w the first infinite ordinal (why stop with the naturals?)
» Keep going: o+1l, o+2, ..., 0+w = 02, 2+1, ..., ®3, ..., 00 = ©°,

3 W PRONE

w7, L, oY L, w? =€, ACL2s measures can use ordinals
» Lexicographic ordering on tuples of natural numbers is = ww
2 X0y vy Xn-1, Xn) — W'X0 + *** + WXn-1 + Xn

» There is an order-preserving bijection from n+1-tuples of Nats to w”

> There is a theorem of this in the ACL2 ordinals books; you can define a
relation, prove it is well-founded and use it in termination proofs

Slides by Pete Manolios for CS4820

Unification Algorithm Termination

» Algorithm: Nondeterministic transition system based on the following rules

> Delete {t=t} u S =S

» Decompose {f(t7, ..., tn) = f(S1, ..., Sn)} w S = {ti=S1, ..., th=Sn} U S
»QOrient{t=x} v S = {x=t} U S, iftis not a variable

> Eliminate {x=t} v S = {x=t} U S|t«x, if xeVars(S) - Vars(t)

» Termination: our measure function will be on ordinals (infinite numbers)

» X is solved in S iff x=t € S and x only appears once in S

» Measure: (vars in S not solved, size of S, # of equations t=xin S)
» Delete < why not =? < Maybe xet, xgS
» Decompose < <
» Orient < — <
» Eliminate <

for every rule we have (< | =)*<, so the lexicographic order is decreasing
(and well-founded), i.e., any algorithm based on these rules terminates

Slides by Pete Manolios for CS4820

