
Lecture 21

Pete Manolios

Northeastern

Computer-Aided Reasoning, Lecture 21

Slides by Pete Manolios for CS4820

Unification Basics
Unification Problem: Given a set of pairs of terms S = {(s1,t1), …, (sn,tn)} a
unifier of S is a substitution σ such that si|σ = ti|σ (we’ll write siσ = tiσ)

U(S) is the set of all unifiers of S; notice that if σ is a unifier, so is τ∘σ

σ is more general than τ, σ ≤ τ, iff τ = δσ (δ∘σ) for some substitution δ

≤ is a preorder; let δ be the identify for reflexivity

transitivity: if σ ≤ τ, τ ≤ θ then τ = δσ, θ = γτ = γ(δσ) = (γδ)σ

σ ∼ τ iff σ ≤ τ, τ ≤ σ. Notice that if σ=x←y, τ =y←x, then σ ∼ τ

σ ∼ τ iff there is a renaming (bijection on Vars) θ s.t. σ = θτ

A most general unifier (mgu) is σ ∈ U(S) s.t. for all τ ∈ U(S), σ ≤ τ

What is an mgu for x=y? x←y? y←x? z←x, z←y? y←x, w←z, z←w?

A substitution is idempotent if σσ = σ (rules out last case above)

σ is idempotent iff Domain(σ) is disjoint from Vars(Range(σ))

If a unification problem has a solution, then it has an idempotent mgu

We want an algorithm that finds an mgu, if a unifier exists

Slides by Pete Manolios for CS4820

Unification Algorithm

S = {(x1,t1), …, (xn,tn)} is in solved form if the xi are distinct variables and don’t
occur in any of the ti. Then S↓= {t1←x1, …, tn ←xn}

If S is in solved form and σ∈U(S), then σ=σS↓ (σ, σS↓ agree on all vars)

If S is in solved form, then S↓ is an idempotent mgu

Algorithm: Nondeterministic transition system based on the following rules

Delete {t=t} ⊎ S ⟹ S

Decompose {f(t1, …, tn) = f(s1, …, sn)} ⊎ S ⟹ {t1=s1, …,tn=sn} ⋃ S

Orient {t=x} ⊎ S ⟹ {x=t} ⋃ S, if t is not a variable

Eliminate {x=t} ⊎ S ⟹ {x=t} ⋃ S|t←x, if x∈Vars(S) - Vars(t)

Unify(S) = apply rules nondeterministically; if solved return S↓, else fail

Try it with: {(x, f(a)), (g(x,x), g(x,y))}

useful way of thinking about algorithms: SMT/IMT

Slides by Pete Manolios for CS4820

Unification Algorithm
Algorithm: Nondeterministic transition system based on the following rules

Delete {t=t} ⊎ S ⟹ S

Decompose {f(t1, …, tn) = f(s1, …, sn)} ⊎ S ⟹ {t1=s1, …,tn=sn} ⋃ S

Orient {t=x} ⊎ S ⟹ {x=t} ⋃ S, if t is not a variable

Eliminate {x=t} ⊎ S ⟹ {x=t} ⋃ S|t←x, if x∈Vars(S) - Vars(t)

x=f(a), g(x,x)=g(x,y)
x=f(a), x=x, x=y

x=f(a), x=y

y=f(a), x=y

y=f(a), x=f(a)

can’t use eliminate on x=x; why?
can’t use orient on x=y; why?

can eliminate using x=f(a)

what other rules can I use?⟹ decompose
⟹ delete

⟹ eliminate x

⟹ eliminate y

⟹ return S↓

Try it with: {(x, f(y)), (y, g(x))}

Try it with: {(P(f(w), f(y)), P(x, f(g(u))), (P(x,u), P(v,g(v))}

Try it with: {(f(a,b,g(x,x),g(y,y),z), f(g(v,v),g(a,a),y,z,b))}

Slides by Pete Manolios for CS4820

Unification Algorithm Termination
Algorithm: Nondeterministic transition system based on the following rules

Delete {t=t} ⊎ S ⟹ S

Decompose {f(t1, …, tn) = f(s1, …, sn)} ⊎ S ⟹ {t1=s1, …,tn=sn} ⋃ S

Orient {t=x} ⊎ S ⟹ {x=t} ⋃ S, if t is not a variable

Eliminate {x=t} ⊎ S ⟹ {x=t} ⋃ S|t←x, if x∈Vars(S) - Vars(t)

Termination: our measure function will be on ordinals (infinite numbers)

0,1, 2, …, ω the first infinite ordinal (why stop with the naturals?)

Keep going:

Lexicographic ordering on tuples of natural numbers is ≈ ωω

⟨x0, …, xn-1, xn⟩ ⟼ ωnx0 + ⋯ + ωxn-1 + xn

There is an order-preserving bijection from n+1-tuples of Nats to ωn

There is a theorem of this in the ACL2 ordinals books; you can define a
relation, prove it is well-founded and use it in termination proofs

ω+1, ω+2, …, ω+ω = ω2, ω2+1, …, ω3, …, ωω = ω2,
…, ω3, …, ωω, …, ωωω…

= ϵ0 ACL2s measures can use ordinals

Slides by Pete Manolios for CS4820

Unification Algorithm Termination
Algorithm: Nondeterministic transition system based on the following rules

Delete {t=t} ⊎ S ⟹ S

Decompose {f(t1, …, tn) = f(s1, …, sn)} ⊎ S ⟹ {t1=s1, …,tn=sn} ⋃ S

Orient {t=x} ⊎ S ⟹ {x=t} ⋃ S, if t is not a variable

Eliminate {x=t} ⊎ S ⟹ {x=t} ⋃ S|t←x, if x∈Vars(S) - Vars(t)

Termination: our measure function will be on ordinals (infinite numbers)

x is solved in S iff x=t ∈ S and x only appears once in S

Measure: ⟨vars in S not solved, size of S, # of equations t=x in S⟩

Delete

Decompose

Orient

Eliminate

≤

≤

≤

<

<

<

=
 <

for every rule we have (≤ | =)*<, so the lexicographic order is decreasing

(and well-founded), i.e., any algorithm based on these rules terminates

why not =? Maybe x∈t, x∉S

