Lecture 19

Pete Manolios
Northeastern

Computer-Aided Reasoning, Lecture 19

Herbrand Interpretations

» Theorem: A universal FO formula (w/out =) is SAT iff all finite sets of ground
instances are (propositionally) SAT (eg P(x) v =P(x) is propositionally SAT)

> Let Y be a universal FO formula w/out equality

» Let H be the Herbrand universe (all ground terms in language of @, as before)

> If G (all ground instances of) is propositionally UNSAT then { is UNSAT
(universal formulas imply all their instances)

> If G is propositionally SAT, say with assignment v, then is SAT
» Let 7 be a canonical interpretation where the universe is H and

» constants are interpreted autonomously: a(c) = ¢
» functions are interpreted autonomously: a(fts ... tn) =ft1 ... ts
» relations are interpreted as follows: <t1, ..., t» e a.R iff v(R t1, ..., tn) = true

> variables are mapped to terms (how doesn’t matter)

» Notice that 7 = . We need to check that for all vars xy,..., x» in {, and for all

t1, ..., thin H, _ f;...1, iff t)... f(t Iff y...T,
n fl |=l// fj(l) j(n)hl// jI:W

. X1...Xy . . X{...X, . X1.-:Xy

which holds by construction since G cbntdins all ground instances

Slides by Pete Manolios for CS4820

FOL Checking

» FO validity checker: Given FO ¢, negate & Skolemize to get universal ¢ s.t.
Valid(o) iff UNSAT(p). Let G be the set of ground instances of { (possibly
infinite, but countable). Let G+, G2 ..., be a sequence of finite subsets of G
s.t. vgcG,|g|<w, 3n s.t. gcGn. 3n s.t. Unsat G, iff Unsat ¢ (and Valid ¢)

» Question 1: SAT checking

> Gilmore (1960): Maintain conjunction of instances so far in DNF, so SAT
checking is easy, but there is a blowup due to DNF

» Davis Putnam (1960): Convert to CNF, so adding new instances does
not lead to blowup

» In general, any SAT solver can be used, eg, DPLL much better than DNF
» Question 2: How should we generate G;?
» Gilmore: Instances over terms with at most O, 1, ..., functions

» Any such “naive” method leads to lots of useless work, eg, the book has
code for minimizing instances and reductions can be drastic

Slides by Pete Manolios for CS4820

Unitication

» Better idea: intelligently instantiate formulas. Consider the clauses
P, f() vV Ox, y), ~P(g(u), v) }

» Instead of blindly instantiating, use x=g(u), v=f(y) so that we can resolve
{P(g(), f(y) V O(g(w),y), ~P(g(u), f())}

» Now, resolution gives us
10(8(u), y)}

» Much better than waiting for our enumeration to allow some resolutions

» Unification: Given a set of pairs of terms S = {(s1,t1), ..., (Sn,tn)} a unifier of S
is a substitution o such that silo = tjo

» We want an algorithm that finds a most general unifier if it exists
» 0 is more general than T, 0 < T, iff T = 600 for some substitution 6
» Notice that if o is a unifier, so is 600
> Similar to solving a set of simultaneous equations, e.g., find unifiers for

> {(P(f(w), 1ly)), Px, flgW)))), (Plx,u), P(v,g(v)))} and {(x, (y)), (v, gix));

Slides by Pete Manolios for CS4820

Exam 1 Review

Slides by Pete Manolios for CS4820

