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EXAM 1

Tomorrow

In class

One page of notes is allowed

Topics


ACL2s: language, defdata, definec, proofs, termination, induction, 
rewriting, simplification, etc.

Propositional logic results & algorithms (2SAT, BDDs, CNF, DNF, 
Resolution, DP, DPLL, etc)

FOL: syntax, semantics, formalization, results, Prenex Normal Form, 
Skolemization
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Reduce FOL to Propositional SAT
We reduced FOL SAT to SAT of the universal fragment

We now go one step further

Theorem: A universal FO formula (w/out =) is SAT iff all finite sets of ground 
instances are (propositionally) SAT (eg P(x) ∨ ¬P(x) is propositionally SAT) 


Corollary: A universal FO formula (w/out =) is UNSAT iff some finite set of 
ground instances is (propositionally) UNSAT

FO validity checker: Given FO φ, negate & Skolemize to get universal ψ s.t. 
Valid(φ) iff UNSAT(ψ). Let G be the set of ground instances of ψ (possibly 
infinite, but countable). Let G1, G2 …, be a sequence of finite subsets of G 
s.t. ∀g⊆G,|g|<ω, ∃n s.t. g⊆Gn. If ∃n s.t. Unsat Gn, then Unsat ψ and Valid φ 


The SAT checking is done via a propositional SAT solver!

If φ is not valid, the checker may never terminate, i.e., we have a semi-
decision procedure and we’ll see that’s all we can hope for

How should we generate Gi? One idea is to generate all instances over 
terms with at most 0, 1, … , functions. We’ll explore that more later.

ground: quantifier/variable free
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Example
⟨∃x ⟨∀y P(x) ⇒ P(y)⟩⟩ is Valid iff ⟨∀x ⟨∃y P(x) ∧ ¬P(y)⟩⟩ is UNSAT

iff ⟨∀x P(x) ∧ ¬P( fy(x))⟩ is UNSAT

Herbrand universe of FO language L is the set of all ground terms of L, except 
that if L has no constants, we add c to make the universe non-empty.

For our example we have H = {c, fy(c), fy(fy(c)), …} 

So G = {P(t) ∧ ¬P(fy(t)) | t ∈ H} 

Notice that ∆ = {P(c) ∧ ¬P(fy(c)), P(fy(c)) ∧ ¬P(fy(fy(c)))} is UNSAT


the SAT solver will report UNSAT for: P(c) ∧ ¬P(fy(c)) ∧ P(fy(c)) ∧ ¬P(fy(fy(c)))

So, for the first Gi that has both ¬P(fy(c)) and P(fy(c)) will lead to termination

BTW, why do we restrict ourselves to FO w/out equality?


Consider P(c) ∧ ¬P(d) ∧ c=d

H = {c,d}

G = {P(c) ∧ ¬P(d) ∧ c=d}, which is propositionally SAT, but FO UNSAT


This is why smart Skolemization is useful

iff ⟨∀x P(x) ∧ ¬P(c)⟩ is UNSATwith smart Skolemization
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Propositional Compactness

A set Γ of propositional formulas is SAT iff every finite subset is SAT

This is a key theorem justifying the correctness of our FO validity checker

Proof: Ping is easy. Let p1, p2, …, be an enumeration of the atoms (assume 
the set of atoms is countable). Define Δi as follows


Δ0 = Γ

Δn+1 = Δn ∪ {pn+1} if this is finitely SAT

Δn+1 = Δn ∪ {¬pn+1} otherwise


Note: for all i, Δi is finitely SAT as is Δ = ∪iΔi  (any finite subset is in some Δi)

Here is an assignment for Γ: v(pi) = true iff pi ∈ Δ


