Lecture 17

Pete Manolios
Northeastern

Computer-Aided Reasoning, Lecture 17

Prenex Normal Form Example

For any FO ¢, we can find an equivalent FO ¢ where all quantifiers
are to the left. Try it!

(Vx i P(x) vV RO)) = (3 Q) v =(3x 2 P(x) A Q(x)))
Constant propagation, remove vacuous quantifiers (x not free in body)

(Vx :: P(x)V R(y))@ (dy :: O(y) V @(dx 11 P(x) A Q(x)))
Convert to NNF (Negation Normal Form) by eliminating = , =, if
(Vx : Px) VR(Y)) V{(3y:: O(y) V{(Vx ::2P(x)V 0((x)))
(Fx 2 =P A =RV 3y} 00) v (W) =P(x) v =0 (x)))
Pull quantifiers to the left
(Ax :: " P(x) A"R()) V{(Ty : (Vx :: O(y) V7 P(x)V 0(x)))
(@ (SP@ ARG) v (V11 0) v =P V 200))) P
(3¢ (v (PR RO 0T VP V00
matrix

Slides by Pete Manolios for CS4820

Prenex Normal Form Algorithm

Constant propagation, remove vacuous quantifiers.

Start with the propositional logic algorithms and extend with:

(Vx::¢p) = ¢ when x is not free in ¢
(dx :: ¢p) = ¢ when x is not free In ¢

Convert to NNF (Negation Normal Form) by eliminating =, =, Iif

Start with the propositional logic algorithms and extend with:
(Vx) = (Ix 1 ~¢h)
—(dx) = (Vx i —¢)

Slides by Pete Manolios for CS4820

Prenex Normal Form Algorithm

Constant propagation, remove vacuous quantifiers
Convert to NNF (Negation Normal Form) by eliminating = , =, If

Pull quantifiers to the left (interesting part)

(Vx::) Vy (Vx :: ¢ Vy) where x is not free in y
wV{(Vx:¢) = (Vx:ywV¢p) where x is not free in
(dx . p) Vy (dx :: ¢ Vy) where x is not free in y
w VvV (dx :: @) (dx ::yw Vv ¢) where x is not free in y

Similarly for conjunction, etc. Use substitution when X is free.

Minimizing the number of quantifiers is a good idea.

(Vx::p) A(Vy i) = (VZZlquAy/E) where z is not free in LHS

X Y
(dx) V{(Ay 1) = <E|ZZZ¢£VI//£> where z is not free in LHS
A Y

Slides by Pete Manolios for CS4820

Prenex Normal Form Algorithm

Constant propagation, remove vacuous quantifiers
Convert to NNF (Negation Normal Form) by eliminating = , =, If

Pull quantifiers to the left (interesting part)

((Vx: @) vy = (Vx: ¢ Vy) where x is not free in y)
V(Vx = (Vx:ywV¢) where xis not free in
VAYAS ¢) _(WV) | Y BROVE
(dx :) Vy = (Ix:: ¢V y) where x Iis not free in
wV{(dx:¢) = (Ix::ywV ¢) where x is not free in y IT

Similarly for conjunction, etc. Use substitution when x is free.

Minimizing the number of quantifiers is a good idea.

[(Vx::qb)A(Vy::w) = (sz:qbi/\l/fi) where 7 is not free In LHSJ

X Y
(dx) V{(Ay 1) = (32::¢£Vw£> where z is not free in LHS
A Y

Slides by Pete Manolios for CS4820

Meaning via Interpretations

» The meaning of a term in an interpretation .# = (A, a, B>
» Ifvelar,then F.v=0.v
» |If c € Sisaconstant, then #.c =a.c

» If f(ts, ..., tn) is a term, then F(f(t4, ..., tn)) is (@.)(F.t1, ...,.7.tn)
» What it means for an interpretation to satisfy a formula:

» SE({r=t) iff 7.t1=T.1

» 7 =Rty ..., tn) iff (F.t1, ...t eaR
» SE=-¢ iff not F =0

> SE@VY) ff F=EdorFE

» J E IxP iff forsomeb e A, F(x<b)=0o

Slides by Pete Manolios for CS4820

Coincidence Lemma

» Let 71 = (A,a1,B1) be an Sy-interpretation and let .72 = (A,az, B2> be
an So-interpretation (both have the same domain). Let S = S7 n Soe.

» 1. Let t be an S-term. If .#1 and .#2 agree on the S-symbols occurring
in t and on the variables occurring in t, then 74(t) = #2(t).

» 2. Let ¢ be an S-formula. If #1 and .¥2 agree on the S-symbols and
on the variables occurring free in ¢, then 71 = ¢ iff 72 = .

» Proof: By induction on S-terms and then on S-formulas

» This is a very useful lemma

Slides by Pete Manolios for CS4820

Substitution

» Substituting t for x in ¢ yields ¢’, which says about t what ¢ says about x
» Consider ¢ = 3z z+z = x. Note that (N,B> = ¢ iff B.x is even
» Replacing x by y gives, ¢’ = 3zz+z=y ,where (N,B> = ¢’ iff B.y is even; good!
» What about replacing x by z? This gives ¢’ =3zz+z=z, but N = ¢’; bad!
» Have to deal with variable capture

» The book provides a definition which replaces bound occurrences of z with
a new variable in ¢

ly...1 ...
» Theorem: For every term, t, 7(t o)= F S). 7t (1)
X0. - X X0. - Xy
- 1 t
» Theorem: For every formula, ¢, 7 F ¢ jj(QRRAC F ¢
X0 Xy X0 Xy

.0

r

» Theorem: If ® is Valid then so is ¢
X0. - Xy

Slides by Pete Manolios for CS4820

Skolem Normal Form Example

For any FO ¢, we can find a universal ¢ in an expanded language such
that ¢ is satisfiable iff { is satisfiable. Try it!

(Ix (Vw (Jy (Vu,v (Iz §pCe, w, y,u,v,2))))))
First, PNF, and push existentials left (2nd order logic)
(Ax, F, (VYw,u,v (Az p(x,w, F (W), u,v,2))))
(3x, F,F, (Yw,u,v px,w, F (W), u,v, F (w,u,v))))
The key idea is the following equivalence We need the axiom of choice
(3... (Vxy,...x, (y ¢(...,x(,...,x,,Y)))) forping
= (3... (FF, (Vg oo, x5 0 X By, o,)))))
This allows us to push existential quantifiers to the left
To get back to FO, note that
Sat(3... (Vx;,...x, (y ¢(....x(,...,x,,)))) iff
Sat(Vx,,....,x, ¢(...,x1, ..., X, F(xy,)
So, to finish our example, we get, where ¢, Fy, F; are new symbols,
(Yw,u,v ¢(c,w, F(w), u,v, F (w,u,v)))

Slides by Pete Manolios for CS4820

Skolem Normal Form Algorithm

Convert formula to NNF
Notice that Skolemizing in arbitrary formulas doesn’t work (hence NNF)

(3x P(x)) A=(3Jy P(y)) is not equisatisfiable with (3x P(x)) A 7P(d)
is equisatisfiable with P(c) A (Vy=P(y))
Only works with positive polarity formulas, which NNF guarantees

With NNF, we can apply Skolemization to any sub formula

(Vx,z x=zVv{(Iyx-y=1)) can be Skolemized as

(Vx,zx=zVx-f(x)=1) or we can convert to PNF
(Vx,z(dyx=zVx-y=1)) and then Skolemize
(Vx,zx=zVvVx-flx,2)=1) order matters!

So, it is better to Skolemize inside-out and then convert to PNF

Slides by Pete Manolios for CS4820

FO Sat/Validity Reductions

Theorem: For any FO ¢, we can find a universal in an expanded language
such that ¢ is satisfiable iff P is satisfiable. (Proof in previous slide)

Previous (Ax (Vw (y (Vu,v (2 p(x,w,y,u, v,2))))))
example (Yw,u,v ¢p(c,w, F,(w), u, v, F(w,u,v)))

Notice that our approach does not give an equi-valid formula. Consider:
(Vx (Jy P(x) = P(y))
(Vx P(x) = P(f,(x))
Both formulas are satisfiable; the first is valid but the second is not
Corollary: For any FO ¢, we can find an existential ¢ in an expanded language
such that ¢ is valid iff Y is valid
Pf. ¢ is valid iff =¢ is unsat iff (universal) @’ is unsat iff (existential) p=-¢’ is valid
¢ =(Vx (Iy P(x) > P(y))) — ¢ =(3x(Vy P(x) AP(y)))
¢'=(Vy P(c) A=P(y)) — w=(3yPlc)=PQY)

So FO Sat reduced to FO universal Sat and FO Validity to FO universal Unsat

Slides by Pete Manolios for CS4820

