Lecture 15

Pete Manolios Northeastern

First Order Logic

- Example: Group Theory
 - (G1) For all x, y, z: $(x \cdot y) \cdot z = x \cdot (y \cdot z)$
 - \triangleright (G2) For all x: $x \cdot e = x$
 - ▶ (G3) For all x there is a y such that: x y = e
- ▶ Theorem: For every x, there is a y such that y x = e
- Examples of groups: Nat, +, 0?; Int, +, 0?, Real, *, 1?
- Proof:
 - By (G3) there is: a y s.t. $x \cdot y = e$ and a z s.t. $y \cdot z = e$
 - Now: $y \cdot x = y \cdot x \cdot e = y \cdot x \cdot y \cdot z = y \cdot e \cdot z = y \cdot z = e$
- Is this true for all groups? Why?
- How many groups are there?
- Are there true statements about groups with no proof?

First Order Logic

- First Order Logic forms the foundation of mathematics
- We study various objects, e.g., groups
- Properties of objects captured by "non-logical" axioms
 - (G1-G3 in our example)
- Theory consists of all consequences of "non-logical" axioms
 - Derivable via logical reasoning alone
 - That's it; no appeals to intuition
- Separation into non-logical axioms logical reasoning is astonishing: all theories use exactly same reasoning
- ▶ But, what is a proof $(\Phi \vdash \varphi)$?
- Question leads to computer science
- Proof should be so clear, even a machine can check it

First Order Logic: Syntax

- Every FOL (first order language) includes
 - Variables v₀, v₁, v₂, ...
 - ▶ Boolean connectives: ∨, ¬
 - Equality: =
 - Parenthesis: (,)
 - Quantifiers: 3
- The symbol set of a FOL contains (possibly empty) sets of
 - relation symbols, each with an arity > 0
 - function symbols, each with an arity > 0
 - constant symbols
- Example: groups 2-ary function symbol and constant e
- Set theory: ∈, a 2-ary relation symbol, ...

First Order Logic: Terms

- ▶ Terms denote objects of study, e.g., group elements
- ▶ The set of S-terms is the least set closed under:
 - Every variable is a term
 - Every constant is a term
 - If $t_1, ..., t_n$ are terms and f is an n-ary function symbol, then $f(t_1, ..., t_n)$ is a term

First Order Logic: Formulas

- Formulas: statements about the objects of study
- An atomic formula of S is
 - ▶ $t_1 = t_2$ or
 - ▶ $R(t_1, ..., t_n)$, where t_i is an S-term and R is an n-ary relation symbol in S
- ▶ The set of S-formulas is the least set closed under:
 - Every atomic formula is a formula
 - If φ, ψ are S-formulas and x is a variable, then ¬φ, (φ ∨ ψ), and ∃xφ are S-formulas
- ▶ All Boolean connectives can be defined in terms of ¬ and ∨
- ▶ We can define $\forall x \phi$ to be $\neg \exists x \neg \phi$

Definitions on Terms & Formulas

- Define the notion of a free variable for an S-formula
- ▶ The definition of formula depends on that of term
- ▶ So, we're going to need an auxiliary definition:

```
var(x) = \{x\}

var(c) = \{\}

var(f(t_1, ..., t_n)) = var(t_1) \cup \cdots \cup var(t_n)
```

Is this a definition? (termination!)

$$free(t_1 = t_2) = var(t_1) \cup var(t_2)$$

 $free(R(t_1, ..., t_n)) = var(t_1) \cup \cdots \cup var(t_n)$
 $free(\neg \varphi) = free(\varphi)$
 $free((\varphi \lor \psi)) = free(\varphi) \cup free(\psi)$
 $free(\exists x \varphi) = free(\varphi) \setminus \{x\}$

Semantics of First Order Logic

- ▶ What does $\exists v_0 R(v_0, v_1)$ mean?
- It depends on:
 - What R means (what relation over what domain?)
 - What v_1 means (what element of the domain?)
- ▶ What if the is domain \mathbb{N} , R is <, and v_1 is 1? If v_1 is 0?
- ▶ An S-interpretation $\mathcal{I} = \langle A, a, \beta \rangle$ where $(\langle A, a \rangle)$ is an S-structure)
 - A is a non-empty set (domain or universe)
 - a is a function with domain S
 - \triangleright β : Var \rightarrow A is an assignment
 - ▶ If $c \in S$ is a constant, then $a.c \in A$
 - ▶ If $f \in S$ is an n-ary function symbol, then $a.f : A^n \to A$
 - ▶ If $R \in S$ is an n-ary relation symbol, then $a.R \subseteq A^n$

Meaning via Interpretations

- ▶ The meaning of a term in an interpretation $\mathcal{F} = \langle A, a, \beta \rangle$
 - ▶ If $v \in Var$, then $\mathscr{F}.v = \beta.v$
 - ▶ If $c \in S$ is a constant, then $\mathcal{I}.c = a.c$
 - ▶ If $f(t_1, ..., t_n)$ is a term, then $\mathcal{I}(f(t_1, ..., t_n))$ is $(a.f)(\mathcal{I}.t_1, ..., \mathcal{I}.t_n)$
- What it means for an interpretation to satisfy a formula:

 - ▶ $\mathcal{I} \models R(t_1, ..., t_n)$ iff $\langle \mathcal{I}.t_1, ..., \mathcal{I}.t_n \rangle \in a.R$
 - $\triangleright \mathcal{I} \models \neg \varphi \text{ iff not } \mathcal{I} \models \varphi$
 - $\triangleright \mathcal{I} \models (\varphi \lor \psi) \text{ iff } \mathcal{I} \models \varphi \text{ or } \mathcal{I} \models \psi$
 - ▶ $\mathcal{F} \models \exists x \varphi$ iff for some $b \in A$, $\mathcal{F}(x \leftarrow b) \models \varphi$

Models & Consequence

- Let Φ be a set of formulas and φ a formula
- \triangleright \mathcal{I} ⊨ Φ (\mathcal{I} is a model of Φ) iff for every $\varphi \in \Phi$, \mathcal{I} ⊨ φ
- Φ ⊨ Φ (Φ is a consequence of Φ) iff for every interpretation, 𝒯, which is a model of Φ, we have that 𝒯 ⊨ Φ
- $\triangleright \varphi$ is *valid* iff $\varnothing \models \varphi$, which we write as $\models \varphi$
- A formula φ is satisfiable, written Sat φ, iff there is an interpretation which is a model of φ
- A set of formulas Φ is satisfiable (Sat Φ), iff there is an interpretation which is a model of all the formulas in Φ

SAT & Validity

- ▶ Lemma: For all φ, Φ: Φ ⊨ φ iff not Sat ($Φ ∪ {¬φ}$)
- ▶ Proof $\Phi \models \Phi$

```
iff for all \mathcal{I}, \mathcal{I} \models \Phi implies \mathcal{I} \models \Phi
```

iff there is no \mathcal{I} such that $\mathcal{I} \models \Phi$ but not $\mathcal{I} \models \Phi$

iff there is no \mathcal{I} such that $\mathcal{I} \models \Phi \cup \{\neg \phi\}$

iff not Sat Φ∪{¬φ}

As a consequence, φ is valid iff ¬φ is not satisfiable

Examples

- ▶ Consider symbol sets $S_{ar} := \{+,\cdot,0,1\}$ and $S_{ar}^{<} := \{+,\cdot,0,1,<\}$
- ▶ *N* denotes the S_{ar} -structure $\langle \omega, +^{\omega}, \cdot^{\omega}, 0^{\omega}, 1^{\omega} \rangle$, where $+^{\omega}, \cdot^{\omega}, 0^{\omega}, 1^{\omega}$ correspond to $+, \cdot, 0, 1$ on ω
- ▶ N< denotes the S_{ar} <-structure $\langle \omega, +\omega, \cdot\omega, 0\omega, 1\omega, <\omega \rangle$, where $<\omega$ corresponds to < on ω
- ▶ R denotes the S_{ar} -structure $\langle R, +^R, \cdot^R, 0^R, 1^R \rangle$, where R is the set of real numbers
- ▶ $R^{<}$ denotes the $S_{ar}^{<}$ -structure $\langle R, +^{R}, \cdot^{R}, 0^{R}, 1^{R}, <^{R} \rangle$, where $+^{R}, \cdot^{R}, 0^{R}, 1^{R}, <^{R} \rangle$ correspond to $+, \cdot, 0, 1, <$ on R
- ▶ $+^R$ and $+^\omega$ are very different objects, but we will drop the subscripts when (we think) no ambiguity will arise