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First Order Logic
Example: Group Theory


(G1) For all x, y, z: (x • y) • z = x • (y • z)

(G2) For all x: x • e = x

(G3) For all x there is a y such that: x • y = e


Theorem: For every x, there is a y such that y • x = e

Examples of groups: Nat, +, 0?; Int, +, 0?, Real, *, 1?

Proof: 


 By (G3) there is: a y s.t. x • y = e and a z s.t. y • z = e

 Now: y • x = y • x • e = y • x • y • z = y • e • z = y • z = e

Is this true for all groups? Why? 

How many groups are there?

Are there true statements about groups with no proof?
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First Order Logic
First Order Logic forms the foundation of mathematics

We study various objects, e.g., groups

Properties of objects captured by “non-logical” axioms 


(G1-G3 in our example) 


Theory consists of all consequences of “non-logical” axioms

Derivable via logical reasoning alone 

That’s it; no appeals to intuition


Separation into non-logical axioms logical reasoning is astonishing: all 
theories use exactly same reasoning 

But, what is a proof (Φ ⊢ φ)?

Question leads to computer science

Proof should be so clear, even a machine can check it
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First Order Logic: Syntax
Every FOL (first order language) includes


Variables v0, v1, v2, ...

Boolean connectives: ∨, ¬

Equality: =

Parenthesis: (, )

Quantifiers: ∃ 


The symbol set of a FOL contains (possibly empty) sets of

relation symbols, each with an arity > 0 

function symbols, each with an arity > 0

constant symbols


Example: groups 2-ary function symbol • and constant e

Set theory: ∈, a 2-ary relation symbol, ...
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First Order Logic: Terms

Terms denote objects of study, e.g., group elements

The set of S-terms is the least set closed under:


Every variable is a term

Every constant is a term

If t1, ..., tn are terms and f is an n-ary function symbol, then 
f(t1, ..., tn) is a term
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First Order Logic: Formulas

Formulas: statements about the objects of study

An atomic formula of S is


t1 = t2  or

R(t1, ..., tn), where ti is an S-term and R is an n-ary relation 
symbol in S


The set of S-formulas is the least set closed under:

Every atomic formula is a formula 

If φ, ψ are S-formulas and x is a variable, then                         
¬φ, (φ ∨ ψ), and ∃xφ are S-formulas


All Boolean connectives can be defined in terms of ¬ and ∨ 


We can define ∀xφ to be ¬∃x¬φ
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Definitions on Terms & Formulas

Define the notion of a free variable for an S-formula

The definition of formula depends on that of term

So, we’re going to need an auxiliary definition: 

var(x) = {x}

var(c) = {}


var(f(t1, ..., tn)) = var(t1) ∪ ⋯ ∪ var(tn)


Is this a definition? (termination!)

free(t1 = t2) = var(t1) ∪ var(t2)


free(R(t1, ..., tn)) = var(t1) ∪ ⋯ ∪ var(tn)


free(¬φ) = free(φ)

free((φ ∨ ψ)) = free(φ) ∪ free(ψ)


free(∃xφ) =  free(φ) \ {x}
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Semantics of First Order Logic

What does ∃v0R(v0, v1) mean?


It depends on:

What R means (what relation over what domain?)

What v1 means (what element of the domain?) 


What if the is domain ℕ, R is <, and v1 is 1?  If v1 is 0?


An S-interpretation ℐ = ⟨A, a, β⟩ where (⟨A, a⟩ is an S-structure)


A is a non-empty set (domain or universe)

a is a function with domain S

β: Var ➝ A is an assignment

If c ∈ S is a constant, then a.c ∈ A 


If f ∈ S is an n-ary function symbol, then a.f : An ➝ A


If R ∈ S is an n-ary relation symbol, then a.R ⊆ An
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Meaning via Interpretations

The meaning of a term in an interpretation ℐ = ⟨A, a, β⟩


If v ∈ Var, then  ℐ.v = β.v


If c ∈ S is a constant, then ℐ.c = a.c 


If f(t1, ..., tn) is a term, then ℐ(f(t1, ..., tn)) is (a.f)(ℐ.t1, ...,ℐ.tn)


What it means for an interpretation to satisfy a formula:


ℐ ⊨ (t1 = t2)  iff  ℐ.t1 = ℐ.t2


ℐ ⊨ R(t1, ..., tn)  iff  ⟨ℐ.t1, ...,ℐ.tn⟩ ∈ a.R


ℐ ⊨ ¬φ  iff  not ℐ ⊨ φ


ℐ ⊨ (φ ∨ ψ)  iff  ℐ ⊨ φ or ℐ ⊨ ψ


ℐ ⊨ ∃xφ  iff  for some b ∈ A, ℐ(x←b) ⊨ φ 
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Models & Consequence

Let Φ be a set of formulas and φ a formula


ℐ ⊨ Φ  (ℐ is a model of Φ) iff for every φ ∈ Φ, ℐ ⊨ φ


Φ ⊨ φ (φ is a consequence of Φ) iff for every interpretation, ℐ, 
which is a model of Φ, we have that ℐ ⊨ φ


φ is valid iff ∅ ⊨ φ, which we write as ⊨ φ 


A formula φ is satisfiable, written Sat φ, iff there is an interpretation 
which is a model of φ

A set of formulas Φ is satisfiable (Sat Φ), iff there is an 
interpretation which is a model of all the formulas in Φ
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SAT & Validity

Lemma: For all φ, Φ: Φ ⊨ φ iff not Sat (Φ ∪ {¬φ})


Proof Φ ⊨ φ 


iff for all ℐ, ℐ ⊨ Φ implies ℐ ⊨ φ 


iff there is no ℐ such that ℐ ⊨ Φ but not ℐ ⊨ φ 


iff there is no ℐ such that ℐ ⊨ Φ∪{¬φ}


iff not Sat Φ∪{¬φ}


As a consequence, φ is valid iff ¬φ is not satisfiable
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Examples

Consider symbol sets Sar := {+,·,0,1} and Sar< := {+,·,0,1,<} 

N denotes the Sar-structure ⟨ω,+ω,·ω,0ω,1ω⟩, where +ω,·ω,0ω,1ω 
correspond to +,·,0,1 on ω

N< denotes the Sar<-structure ⟨ω,+ω,·ω,0ω,1ω,<ω⟩, where <ω 
corresponds to < on ω

R denotes the Sar-structure ⟨R,+R,·R,0R,1R⟩, where R is the set of 
real numbers

R< denotes the Sar<-structure ⟨R,+R,·R,0R,1R, <R⟩, where +R,·R,0R,1R, 
<R correspond to +,·,0,1,< on R 

+R and +ω are very different objects, but we will drop the 
subscripts when (we think) no ambiguity will arise


