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Boolean Constraint Propagation

Unit resolution rule:
C, ¢ P
C

» BCP: given a set of clauses including {{}
» remove all other clauses containing £ (subsumption)
» remove all occurrences of =£ in clauses (unit resolution)

» repeat until a fixpoint is reached
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DPLL SAT Algorithm

» BCP

» Base case: empty clause: UNSAT

» Remove clauses containing pure literals (modern solvers don’t do this)
» Base case: no clauses: SAT

» Choose some var, say X
(if removing pure literals, x has to appear in both phases)

» Add {x} and recursively call DPLL
» Add {-x} and recursively call DPLL
» |f one of the calls returns SAT, return SAT
» Else return UNSAT
» Correctness follows from Shannon expansion

» |n contrast to DP, space is not a problem
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DPLL SAT Example

1. {A, B} AL

2. {B.C} g o

3. {-A,-X.Y) B=t 0
A= 4. {ﬂ A, X, Z} /.,'.,./ . f\

5. {—A,-Y, Z} C< X C=t

6. {—A,X,~Z} AN /s

(. {ﬁA, Y, 2 } Y, X X X

X XX X

» Note that when DPLL detects contradictions it backtracks chronologically

» When we get a contradiction with X, we try —=X, then we go back and try -C and X, =X again, ...

» But the real problem was that we set A; can we avoid this exponential search?

» Yes: non-chronological backtracking, a major improvement
Examples/figures from chp. 3 SAT handbook: pure literals not removed
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Implication Graphs

A
N 1. {A, B}
B 2. {B.C}
) / ‘\_,_\ B =t { 3. { — A, ﬂ)(, }r}
/ N A= 4.{-AX.Z)
C ) \ \. X C —1 H. {ﬂ A, —.Y, YA }
6. {-4,X.-Z)
/ f 7 X 7. {—A,-Y,~Z}
X/ pXoX X

/ -
» Nodes are I/V=v: var V settov @ level | Y B=1

» If node implied, justification recorded Ve
(clause #, edges from assignments) SI0 =1 /

» {} denotes contradiction .
3/ X =t
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Conflict-Driven Clauses

. {A, B}
{B.C}
{=A,-X. Y}
{-AX.Z)
{=A,-Y, Z)
{=A, X, ~Z)
A=A, Y, -2}

|
=1 OOV N

Cut 2 Cut 3

» Consider any cut of the implication graph that separates decision vars from {}
» The nodes with an edge that crosses the cut are in conflict set

» Negate the assignments in the set to obtain a conflict-driven clause

» Conflict clauses: Cutl: {-A,-X}, Cut2: {-A, Y}, Cut3: {-A, =Z, Y}

» Conflict—driven clauses generated from cuts that contain exactly one variable
assigned at the level of conflict are said to be asserting: Cut1 & Cut2 (not Cut 3)
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Non-Chronological Backtracking

0/A=t

A, B}
{B.C} o)
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» Asserting conflict clauses: Cut1: 8. {-A,—-X}, Cut2: {-A, =Y}

» Assertion level: 2nd highest level in asserting clause (0 for cuts 1, 2) or -1

» Backtrack to assertion level and add a learned clause (non-chronologicall)

» We can now immediately infer (BCP) =X (we use Cut1), so we have A, =X

» Then by BCP: Z (4), -Z (6) so we get a new implication graph

» Asserting clauses: {—A} at level -1, so we have —-A, BCP: B and we’re done

» Compare to previous search, where the algorithm had to go back a level at a time

» Clause learning can generate exponentially shorter proofs of unsat!

Slides by Pete Manolios for CS4820



Modern CDCL Solvers

» Based on DPLL, but with conflict-driven clause learning

» Data structures to speed up BCP: 2-watched literal scheme
» Data structures for clause learning

» Decision heuristics: select recently active literals (VSIDS)

» Preprocessing: greedy variable elimination

» Inprocessing: interleave preprocessing & search

» Clause deletion: learned clauses lead to memory & efficiency
problems, so delete large, inactive clauses

» Random restarts: keep learned clauses, but restart
» avoids getting stuck in hard part of search space

» phase saving: pick last phase of assignment
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DIMACS Format

» Modern SAT solvers accept input in CNF
» Dimacs format:
»1-3450
»2-470

...
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BDDs and Decision Trees

» A BDD on X1, ..., Xn is a DAG G=(V, E) where

» exactly 1 vertex has indegree 0O (the root)

» all vertices have outdegree 0 (leaves) or 2 (inner nodes)

» the inner nodes are labeled from {x1, ..., Xn}

» the leaves are labeled from {0, 1}

» one of the edges from an inner node is labeled by 0; the other by 1
» The BDD G=(V, E) represents a Boolean function, say f

» for any assignment A in Bn, f(A) is computed recursively from root

» if we reach a leaf, return the label

» for inner nodes, say labeled with xi, take the edge labeled by A(xi)
» A decision tree is a BDD whose graph is a tree

» A BDD is an OBDD if there is a permutation on p={1,2, ..., n} s.t. for all edges (u,
V) in E, where u, v are labeled by x;, x;, we have that p; < p;

» An OBDD is an ROBDD if it has no isomorphic subgraphs and all children are
distinct
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BDDs and Decision Trees
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Decision Tree for f ROBDD for f

How do we generate DNF from a decision tree? ROBDD?

Images from Wikipedia
Slides by Pete Manolios for CS4820



BDDs

» Decision trees are widely used, e.g., in machine learning (ID3, C4.5, ...)

» BDDs are widely used (BDD usually means ROBDD)
» Popularized by Bryant
» Vlery efficient algorithms for constructing, manipulating BDDs

» Used in verification, synthesis, fault trees, security, Al, model checking, static
analysis, ...

» Bryant’s paper was the most cited research paper (at some point)
» Many BDD packages available

» Once a variable ordering is selected, BDDs are canonical!

» Construct decision tree using Shannon expansion and merge isomorphic
nodes, remove nodes who children are equal until you reach a fixpoint

» To see, this note that BDDs are essentially DFAs that recognize strings in {0,1}"
and such automata can be minimized (note nodes with equal children remain)

» S0, checking equality is just pointer equality (with appropriate data structures)

» Can be used for model checking: represent set of reachable states & transition
system with BDDs
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Variable Ordering for BDDs

Variable ordering matters: finding the best ordering is hard.

Bad Ordering Good Ordering
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