
Lecture 10

Pete Manolios

Northeastern

Computer-Aided Reasoning, Lecture 10

Slides by Pete Manolios for CS4820

Short History
Ancients: Logic invented as a scientific field of study by Aristotle (380-322 B.C.)

Categorical logic, quantifiers, 2-valued, satisfiability, validity, …

Medieval Logicians: early ideas of mechanization, eg, Lull (1232-1315)

Leibniz (1646-1716): calculus ratiocinator, a kind of calculating machine

Stanhope (1753-1816): first machine to solve logic problems

Boole (1815-1864): Boolean algebra

Frege (1848-1925): Concept notation, basis for modern formal logic

Russell & Whitehead, Godel, Herbrand, Pierce, Tarski, …

Shannon (1940): Boolean logic to minimize circuits

Davis & Putnam (1958): DP algorithm, DPLL (1962)BDDs (Lee 1959), …, ROBDDs (Bryant
1986, …)

Bryant, Clarke, Emerson & McMillan received the 1998 Paris Kanellakis Award for “their invention
of 'symbolic model checking', a method of formally checking system designs widely used in the
computer hardware industry.”

CDCL: decision heuristics, backjumping, learning/forgetting, restarts, pre/in-processing, …

Slides by Pete Manolios for CS4820

DP SAT Algorithm
Davis Putnam (1960)

Input: CNF formula

Output: SAT/UNSAT

Idea: apply three rules until

Derive the empty clause: UNSAT (identity of is false)

No clauses remain: SAT (identity of is true)

Three “rules”

Pure literal rule (affirmative-negative rule)

Unit resolution rule (unit propagation, BCP, 1-literal rule)

Resolution (Called consensus, also used for logic minimization)

∨
∧

Slides by Pete Manolios for CS4820

Pure Literal Rule

Given , a set of clauses, and literal ℓ such

ℓ appears in

¬ℓ does not appear in

remove all clauses containing ℓ

Equisatisfiable because we can make ℓ true

Notice that this always simplifies

Modern SAT solvers tend to not use the rule (efficiency)

F
F

F

F

Slides by Pete Manolios for CS4820

Boolean Constraint Propagation

BCP: given a set of clauses including {ℓ}

remove all other clauses containing ℓ (subsumption)

remove all occurrences of ¬ℓ in clauses (unit resolution)

repeat until a fixpoint is reached

Unit resolution rule:

C, ¬ℓ ℓ

C

Slides by Pete Manolios for CS4820

Resolution

Soundness of rule: above line implies below line

If below line is SAT, so is above line (w/ side conditions)

Given literal p, set of clauses S, let P be the clauses in S that contain p
only positively and let N be the clauses that contain p only negatively.
Let E be the rest of the clauses. Then S is SAT iff S’ is SAT, where S’= E
U the set of all p-resolvents of P and N.

Proof: If A is an assignment for S, then if A(p)=true, all clauses in N,
with ¬p removed are satisfied, so each p-resolvent is satisfied. Similarly
if A(p)=false. If A is an assignment for S’, then it satisfies all Ci or all Di:
suppose it doesn’t satisfy Ck, then it must satisfy all Di. If it satisfies all
Ci, let A’(p)=false, else A’(p)=true and A’(x)=A(x) otherwise.

Resolution rule:

C, v D, ¬v

C, D

¬v,v ∉ C,D

Resolution rule:

Ci, p Di, ¬p

Ci, Di

¬p ∉ Ci ∈ P ,p ∉ Di ∈ N

Slides by Pete Manolios for CS2800, Logic & Computation, NU 2020

Resolution Example
Resolution rule:

C, v D, ¬v

C, D

C, D are clauses, ¬v∉C and v∉D

{{¬p, q, r, s}, {p, ¬q, s}, {¬p, ¬q, r, ¬s}, {p, ¬r, ¬s}, {¬p, ¬q, ¬r}, {p, q}, {¬p, ¬q, s}}

{{p, ¬r, ¬s}, {¬p, r, s}, {p, s}}

Given literal p, set of clauses S, let P be the clauses in S that contain p only positively
and let N be the clauses that contain p only negatively. Let E be the rest of the clauses.
Then S is SAT iff S’ is SAT, where S’= E U the set of all p-resolvents of P and N.

Resolve on q {¬p, p, r, s} Notice that clauses that contain a literal and

its negation can be thrown away. Why?

Slides by Pete Manolios for CS2800, Logic & Computation, NU 2020

Resolution Example
Resolution rule:

C, v D, ¬v

C, D

C, D are clauses, ¬v∉C and v∉D

{{¬p, q, r, s}, {p, ¬q, s}, {¬p, ¬q, r, ¬s}, {p, ¬r, ¬s}, {¬p, ¬q, ¬r}, {p, q}, {¬p, ¬q, s}}

{{p, ¬r, ¬s}, {¬p, r, s}, {p, s}}

Given literal p, set of clauses S, let P be the clauses in S that contain p only positively
and let N be the clauses that contain p only negatively. Let E be the rest of the clauses.
Then S is SAT iff S’ is SAT, where S’= E U the set of all p-resolvents of P and N.

Resolve on q

Resolve on r

{{p, s}} Sat, resolve on p to get {} or use pure literal rule

{¬p, p, r, s} Notice that clauses that contain a literal and

its negation can be thrown away. Why?

How do we generate a satisfying assignment? Next homework

Slides by Pete Manolios for CS4820

DP SAT Algorithm
Input: CNF formula, Output: SAT/UNSAT

Base case: empty clause: UNSAT

Base case: no clauses: SAT

Apply these two rules until fixpoint

Pure literal rule

BCP

Choose var, say x, perform all possible resolutions, remove trivial
clauses and clauses containing x

Repeat

Existentially quantify variables, one at a time

Problem: space blow-up

Slides by Pete Manolios for CS4820

Defdata,
Macros, History

DEMO

