
Lecture 6

Pete Manolios

Northeastern

Computer Aided Reasoning, Lecture 6

Slides by Pete Manolios for CS4820

Simplification in Detail
Simplification is the heart of the theorem prover. It:

applies propositional calculus, equality, and linear arithmetic decision
procedures,

uses type information and forward chaining rules to construct a “context”
describing the assumptions of each subterm,

rewrites each subterm in the appropriate context, using definitions,
conditional rewrite rules, and metafunctions,

use propositional calculus normalization to convert the resulting formula to
an equivalent set of formulas, reduce the set under subsumption, and
deposit the surviving formulas back in the pool.

Assume the formula to which the simplifier is applied is of the form (implies
(and p1 . . . pn) q). The pi are the hypotheses and q is the conclusion.

First we discuss equivalence relations and congruence rules, which are
fundamental to several aspects of the simplifier.

Then we discuss each of the four steps in the order in which they occur.

Slides by Pete Manolios for CS4820

Context
After decision procedures, the simplifier will rewrite each hypothesis and
then the conclusion.

Rewriting is done in a context that specifies what is assumed true.

For the conclusion, we assume all of the hypotheses.

For a hypothesis, we assume the other hypotheses and the negation
of the conclusion.

The context actually consists of two kinds of information: arithmetic and
type theoretic.

Arithmetic inequalities from the assumptions and linear rules provide
arithmetic information.

Type theoretic information: type algorithm, type-prescription &
compound-recognizer rules.

Slides by Pete Manolios for CS4820

Type-Theoretic Context
Type-prescription rules allow you to inform the type algorithm of the type
of the output produced by a function.

E.g., (true-listp (rev x)) allows the type algorithm to deduce that the
type of (rev (app a b)) is either nil or a proper cons.

Compound-recognizer rules are applicable to Boolean-valued functions
of one argument (recognizers).

E.g., (implies (primep x) (posp x)) allows ACL2 to deduce type
information about x.

Forward chaining rules: a theorem of the form

E.g., (implies (and p1 . . . pn) q), where p1 is the default trigger term
(you can specify the trigger terms).

If an instance of the trigger occurs in the context and the pi are all
true in the context, then q is added to the context.

Slides by Pete Manolios for CS4820

Tau System
Tau rules extend ACL2’s type checker.

The tau system is only tried when subgoals first enter the waterfall and
when they are stable under simplification.

Supports many kinds of rules, including

Simple: (implies (p v) (q v))

Conjunctive: (implies (and (p1 v) ... (pk v)) (q v))

Signature: (implies (and (p1 x1) (p2 x2) ...) (q (fn x1 x2 ...)))

Eval, Signature Form 2, Bounder, Big Switch, MV-NTH Synonym, etc.

p, q, p1, etc., denote monadic Boolean-valued function symbols, or
equalities where one argument is constant, arithmetic comparisons in
which one argument is a constant, or the negations of such terms.

Slides by Pete Manolios for CS4820

Rewriter: High-Level Overview
Variable & constants rewrite to themselves

(f a1 ... an): (target) In most cases, rewrite ai, to get a′i and rewrite (f a′1 ...
a′n) (inside-out)

Special case(s): if f is if, rewrite the test, a1, to a′1; then rewrite a2 and/or
a3 depending on whether we can establish if a′1 is nil

(f a′1 ... a′n): Consider all rules derived from axioms, definitions, theorems
in reverse chronological order.

Apply the first that fires & repeat

All of this happens in simplification

There is a rich underlying theory of term-rewriting

Slides by Pete Manolios for CS4820

Rewrite Rules
Rewrite rules are of the form:
(implies (and h1 ... hk) (equal (f b1 ... bn) rhs))

The definition of f is of this form (hyps are input contracts)

A theorem concluding with (not (p . . .)) is considered to conclude with (iff
(p . . .) nil)

A theorem concluding with (p . . .), where p is not a known equivalence
relation and is not “not,” is considered to conclude with (iff (p ...) t)

Rules causes the rewriter to replace instances (f b1 ... bn) with the
corresponding instance of rhs when they fire

Slides by Pete Manolios for CS4820

Rewrite Rules
Rewrite rule: (implies (and h1 ... hk) (equal (f b1 ... bn) rhs))

Rule causes the rewriter to replace pattern (f b1 ... bn) with the
corresponding instance of rhs when they fire

If we can instantiate variables in the pattern so that the pattern matches
the target to get, say
(implies (and h′1 ... h′k) (equal (f a′1 ... a′n) rhs′))

We try to apply the rule, by establishing its hypotheses

Backchaining: Rewriting is used recursively to establish each hypothesis
in the order in which they appear

If successful, recursively rewrite rhs′ to get rhs′′

Certain heuristic checks are used to prevent some loops

Finally, if certain heuristics approve of rhs′′, we say the rule fires and the
result is rhs′′. This result replaces the target term.

Slides by Pete Manolios for CS4820

Special Hypotheses
pi is an arithmetic inequality, say (< u v): the two arguments are rewritten, to u′
and v′, and then the linear arithmetic decision procedure is applied to (< u′ v′).

An instantiated hypothesis contains free variables (e.g., transitivity). The rewriter
looks for a binding of the free variables that make the hypothesis true. See set-
match-free-default, which can be set to :once, :all, etc. Backtracking can occur.

An instantiated hypothesis is of one of three forms:

(syntaxp p) always returns t. But when the rewriter encounters such a
hypothesis it evaluates the form inside the syntaxp to decide whether the
rule should fire.

(force p) is defined as the identity function. When the rewriter finds a hyp
marked with force, it tries to establish it as above and if that fails it assumes
hyp and goes on. These proofs are, by default, delayed until the successful
completion of the main goal, using all the power of the theorem prover.

(case-split p) is a variant of force. When a hypothesis has the form (case-split
hyp) it is logically equivalent to hyp. If ACL2 attempts to apply the rule but
cannot establish the instance of hyp holds, it considers the hyp true anyhow,
but creates a subgoal in which the instance of hyp is assumed false.

Slides by Pete Manolios for CS4820

Heuristic Checks
A rule for a function definition or definition rule, corresponds to expanding
a call of the function. If the definition is recursive, we want to avoid
looping: the rewriter will not fire the rule if the rewritten rhs, rhs′′, fails
certain tests.

One test permitting firing is that the arguments to the rewritten
recursive call already appear in the formula being proved by the
simplifier.

Another test permitting the firing is that the arguments be
symbolically simpler.

For rules like (equal (f x y) (f y x)) that permute arguments to a function,
care is taken not to loop forever. Essentially, the system uses permutative
rules only to swap arguments into “alphabetical” order.

The rewriter just does what you tell it to do with your rewrite rules. If you
tell it to loop forever, by rewriting a to b, b to c, and c to a, then it will loop
forever, or as long as the resources of time and memory allow.

Slides by Pete Manolios for CS4820

Normalization & Subsumption
Assume the simplifier is working on (implies (and p1 . . . pk) q), by
rewriting the parts, and it has just rewritten pk. Suppose the result is a
term that involves an if-expressions, say the result is (p (if a b c)). Then if
normalization occurs.

The simplifier tries to clean up the set of formulas.

For example, if one formula is (implies p q) and another is (implies
(and p r) q), then clearly we just prove the former.

If one formula is (implies (and p r) q) and another is (implies (and p
(not r)) q), then we just prove (implies p q).

If the result of subsumption/replacement is a set containing the input
formula, then the simplifier passes the formula to dest elim.

If the result is the empty set of formulas, then the simplifier proved the
input formula.

Otherwise, the simplifier deposits each of the formulas into the pool.

Slides by Pete Manolios for CS4820

Driving ACL2
You are responsible for guiding ACL2 by proving the appropriate lemmas

Rules generated by lemmas are rewrite rules

You have to learn to program ACL2

That involves building a mental model

The ACL2 book advocates “the method”

Once a proof attempt is started, one can interact with ACL2 only by
interrupting the proof attempt

Slides by Pete Manolios for CS4820

Proof Tags

In the proof dag, every node
corresponds to a lemma

To lead ACL2 to a proof, you must
prove every lemma (using a
topological sort)

As a practical matter, you may not
have the dag

The Method is a way of using
ACL2 to discover it

Main

CA

A1

B

C2A3A2

A2bA2a

C1

Slides by Pete Manolios for CS4820

The Method
In ACL2s, we have an editor and a session

Our code is in the editor, initially containing the main theorem

When we are done, the editor will contain a topological sort of a proof
dag

During the project, the editor has a “line”

Above the line, is the done list: successful commands

Below line, to-do list: remaining commands

Slides by Pete Manolios for CS4820

The Method

Add lemmas
to front of to-
do list

Yes

No

Advance the line. Abort if it takes too long. Did
ACL2s succeed?

Think about the first theorem in the to-do list. Have
the necessary lemmas been proved?

Inspect proof
checkpoint.
Modify editor

Yes
No

Slides by Pete Manolios for CS4820

Failed Proofs and Generalization
Focus on first subgoal that ACL2 cannot simplify which does not get proved

Use the proof-tree “view” to select checkpoints

Use the proof builder (use ACL2 as a proof checker)

Consider defining and proving

 (defun append (x y)

 (if (endp x)

 y

 (cons (car x) (append (cdr x) y))))

 (defthm append-a

 (equal (append (append a a) a)

 (append a (append a a))))

Generalization is key (as it is in all of math)

Slides by Pete Manolios for CS4820

Theorem Proving Strategies
ACL2 is really a programmable theorem prover

Define a “normal” form & rules that assume/respect it

Coming up with a rewrite strategy is key, e.g., if app associates to the
left, then rules that associate it to the right are going to cause loops

In addition to rewrite rules, there are built-in-clause, clause-processor,
compound-recognizer, congruence, definition, elim, equivalence,
forward-chaining, generalize, induction, linear, meta, refinement, tau-
system, type-prescription, type-set-inverter and well-founded-relation
rules and many options for controlling how they work

You can also provide hints, including computed-hints, which allow you to
write a program that computes hints based on the goal under
consideration

You can define your own theorem prover (meta rules), use external
solvers (clause-processors), etc

Slides by Pete Manolios for CS4820

DEMO
Append/Reverse example

Defining rewrite rules
Rewrite strategies

Proof Builder (Proof Checker)
Examples

