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Equality
Equality (equal, or =) is an equivalence relation 

Reflexivity:                   x = x

Symmetry of Equality:  x = y   ⇒  y = x


Transitivity of Equality:  x = y ∧ y = z  ⇒  x = z


Equality Axiom Schema for Functions: For every function symbol f of arity n 
we have the axiom

x1 = y1 ∧ ... ∧ xn = yn  ⇒  (f x1 ... xn) = (f y1 ... yn)


In ACL2, we would write  (len (cons x z)) = (len (cons y z)) as


(equal (len (cons x z))
       (len (cons y z)))
= and ≠ bind more tightly than any of the propositional operators
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Built-in Functions
Axioms for built-in functions, such as cons, car, and cdr

Axioms are theorems we get for “free” characterizing cons, car, cdr, 
consp, if, equal, etc. 


(car (cons x y)) = x
(cdr (cons x y)) = y

(consp (cons x y)) = t

x = nil ⇒  (if x y z) = z

x ≠ nil ⇒ (if x y z) = y

Reason about constant expressions using evaluation

t ≠ nil, (cons 1 ()) = (list 1), 3/9 = 1/3, ( ) = ’nil, …

Note: from the the semantics of the built-in functions
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Built-in Functions
Propositional Logic


(not p) = (if p nil t) 

(implies p q) = (if p (if q t nil) t) 

(iff p q) = (if p (if q t nil) (if q nil t)) 


By embedding propositional calculus and = in term language, terms (τ) 
can be interpreted as formulas (τ ≠ nil) 


e.g., x as a formula is x ≠ nil

(foo x y z) as a formula is (foo x y z)≠ nil


Similarly, we add axioms for numbers, strings, etc.

This is all in GZ, the “ground-zero theory”
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Instantiation
A substitution σ is a list of the form ((var1 term1) … (varn termn))


the vars are the “targets” (no repetitions) and the terms are their “images”

by f|σ we mean, substitute every free occurrence of a target by its image

(cons x (let ((y z)) y))|((x a) (y b) (z c) (w d)) =                
(cons a (let ((y c)) y))

Instantiation: If f is a theorem, so is f|σ

(len (list x)) = 1 is theorem, so is (len (list (list x y))) = 1

Are the following substitutions correct?

(cons 'a b)|((a (cons a (list c))) (b (cons c nil)))

(cons 'a (cons c nil)) 

(cons x (f x y f))|((x (cons a b)) (f x) (y (app y x)))

(cons (cons a b) (f (cons a b) (app y x) x))
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Inference Rules
Evaluation


Propositional calculus validities

Includes exportation, Modus Ponens, Proof by contradiction, …


Equality axioms

equality is an equivalence relation, equality schema for functions


Instantiation

Start with built-in axioms

New axioms are added via definitional principle

Also defaxiom, defchoose, encapsulation, etc can add axioms
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How to Prove Theorems
Once you are done with contract checking, completion & generalization

Extract the context by rewriting the conjecture into the form:                     
[C1 ∧ C2 ∧ … ∧ Cn] ⇒ RHS where there are as many hyps as possible


Derived context. What obvious things follow? Common patterns:

(endp x), (true-listp x): x=nil

(true-listp x), (consp x): (true-listp (rest x))

φ1 ∧… ∧ φn ⇒ ψ: Derive φ1,…,φn  and use MP to ψ

Proof. Use the proof format from RAP.

For equality, start with LHS/RHS and end with RHS/LHS or start w/ LHS 
& reduce, then start w/ RHS & reduce to the same thing

For transitive relation (⇒, <, ≤, …) same proof format works


For anything else reduce to t
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Equational Reasoning
(implies (and (true-listp x)
              (true-listp y))
         (implies (and (consp x)
                       (not (equal a (first x)))
                       (implies (true-listp (rest x))
                                (implies (in a (rest x)) 
                                         (in a (app (rest x) y)))))
                  (implies (in a x) 
                           (in a (app x y)))))

Contract completion adds hypotheses.
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ER Example
(implies (and (true-listp x)
              (true-listp y))
         (implies (and (consp x)
                       (not (equal a (first x)))
                       (implies (true-listp (rest x))
                                (implies (in a (rest x)) 
                                         (in a (app (rest x) y)))))
                  (implies (in a x) 
                           (in a (app x y)))))

Next: Prepare context
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ER Example
(implies (and (true-listp x)
              (true-listp y))
         (implies (and (consp x)
                       (not (equal a (first x)))
                       (implies (true-listp (rest x))
                                (implies (in a (rest x)) 
                                         (in a (app (rest x) y)))))
                  (implies (in a x) 
                           (in a (app x y)))))

Exportation:  A ⇒ (B ⇒ C)  ≡  (A ∧ B) ⇒ C

A

B

C



Slides by Pete Manolios for CS4820

ER Example
(implies (and (true-listp x)
              (true-listp y)
              (consp x)
              (not (equal a (first x)))
              (implies (true-listp (rest x))
                       (implies (in a (rest x)) 
                                (in a (app (rest x) y)))))
         (implies (in a x) 
                  (in a (app x y)))))

Exportation:  A ⇒ (B ⇒ C)  ≡  (A ∧ B) ⇒ C

A

B

C



Slides by Pete Manolios for CS4820

ER Example
(implies (and (true-listp x)
              (true-listp y)
              (consp x)
              (not (equal a (first x)))
              (implies (true-listp (rest x))
                       (implies (in a (rest x)) 
                                (in a (app (rest x) y)))))
         (implies (in a x) 
                  (in a (app x y)))))



Slides by Pete Manolios for CS4820

ER Example
(implies (and (true-listp x)
              (true-listp y)
              (consp x)
              (not (equal a (first x)))
              (implies (true-listp (rest x))
                       (implies (in a (rest x)) 
                                (in a (app (rest x) y)))))
         (implies (in a x) 
                  (in a (app x y)))))

Exportation again:  A ⇒ (B ⇒ C)  ≡  (A ∧ B) ⇒ C

A

B
C



Slides by Pete Manolios for CS4820

ER Example
(implies (and (true-listp x)
              (true-listp y)
              (consp x)
              (not (equal a (first x)))
              (implies (true-listp (rest x))
                       (implies (in a (rest x)) 
                                (in a (app (rest x) y))))
              (in a x)) 
         (in a (app x y)))))

Exportation again:  A ⇒ (B ⇒ C)  ≡  (A ∧ B) ⇒ C

A

B
C



Slides by Pete Manolios for CS4820

ER Example
(implies (and (true-listp x)
              (true-listp y)
              (consp x)
              (not (equal a (first x)))
              (implies (true-listp (rest x))
                       (implies (in a (rest x)) 
                                (in a (app (rest x) y))))
              (in a x)) 
         (in a (app x y)))))



Slides by Pete Manolios for CS4820

ER Example
(implies (and (true-listp x)
              (true-listp y)
              (consp x)
              (not (equal a (first x)))
              (implies (true-listp (rest x))
                       (implies (in a (rest x)) 
                                (in a (app (rest x) y))))
              (in a x)) 
         (in a (app x y)))))

Exportation again:  A ⇒ (B ⇒ C)  ≡  (A ∧ B) ⇒ C

B
C

A



Slides by Pete Manolios for CS4820

ER Example
(implies (and (true-listp x)
              (true-listp y)
              (consp x)
              (not (equal a (first x)))
              (implies (and (true-listp (rest x))
                            (in a (rest x))) 
                       (in a (app (rest x) y)))
              (in a x)) 
         (in a (app x y)))))

Exportation again:  A ⇒ (B ⇒ C)  ≡  (A ∧ B) ⇒ C

B
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ER Example
(implies (and (true-listp x)
              (true-listp y)
              (consp x)
              (not (equal a (first x)))
              (implies (and (true-listp (rest x))
                            (in a (rest x))) 
                       (in a (app (rest x) y)))
              (in a x)) 
         (in a (app x y)))))

Notice that we cannot use exportation in the 5th  hypothesis
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ER Example

C1. (true-listp x)
C2. (true-listp y)
C3. (consp x)
C4. a ≠ (first x)
C5. (true-listp (rest x)) ∧ (in a (rest x)) 
     ⇒ (in a (app (rest x) y))

C6. (in a x)
————————————————————————————————————————-——————
C7. (true-listp (rest x)) { C1, Def true-listp, C3 }
C8. (in a (rest x))       { C6, Def in, C3, C4, PL }
C9. (in a (app (rest x) y)) { C5, C7, C8, MP }

(implies 
  (and (true-listp x)
       (true-listp y)
       (consp x)
       (not (equal a (first x)))
       (implies (and (true-listp (rest x))
                     (in a (rest x))) 
                (in a (app (rest x) y)))
       (in a x)) 
  (in a (app x y)))))

(defunc in (a X) 
  :input-contract (true-listp x)
  :output-contract (booleanp (in a X))
  (if (endp x)
      nil
    (or (equal a (first X))
        (in a (rest X)))))

(defunc true-listp (l) 
  :ic t
  :oc (booleanp (true-listp l))
  (if (consp l)
      (true-listp (rest l))
     (equal l () )))
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ER Example
C1. (true-listp x)
C2. (true-listp y)
C3. (consp x)
C4. a ≠ (first x)
C5. (true-listp (rest x)) ∧ (in a (rest x)) 
     ⇒ (in a (app (rest x) y))
C6. (in a x)
————————————————————————————————————————-——————
C7. (true-listp (rest x)) { C1, Def true-listp, C3 }
C8. (in a (rest x))  { C6, Def in, C3, C4, PL }
C9. (in a (app (rest x) y)) { C5, C7, C8, MP }

  (in a (app x y))
=   { Def app }
  (in a (cons (first x) (app (rest x) y)))
=   { Def in, first-rest-cons axioms }
  (or (equal a (first x)) (in a (app (rest x) y)))
=   { C9, PL }
  t

(defunc in (a X) 
  :input-contract (true-listp x)
  :output-contract (booleanp (in a X))
  (if (endp x)
      nil
    (or (equal a (first X))
        (in a (rest X)))))

(defunc true-listp (l) 
  :ic t
  :oc (booleanp (true-listp l))
  (if (consp l)
      (true-listp (rest l))
     (equal l () )))
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Induction Schemes
Given a function definition of the form:

If ci contains a call to f, we say it is a recursive case


else it is a base case 

Let tm+1 be t. 
Let Casei be ti ∧ ¬tj for all j< i  
︎The function f gives rise to the following induction scheme:

 To prove φ, you can instead prove


1. ¬ic ⇒ φ 

2. For all ci that are base cases: [ic ∧ Casei] ⇒ φ 

3. For all ci that are recursive cases: [ic ∧ Casei ∧ ︎1≤j≤Ri φ|σij ] ⇒ φ 

If ci is a recursive case, then it includes at least one call to f. 
Say there are Ri calls to f and they are (f x1 . . . xn)|σij , for 1 ≤ j ≤ Ri

(defunc f (x1 . . . xn) 
  :input-contract ic 
  :output-contract oc 
  (cond (t1 c1)
        (t2 c2)
        ...
        (tm cm) 
        (t cm+1)))
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Induction Schemes
(defunc nind (x) 
  :input-contract (natp x) 
  :output-contract t 
  (cond ((= x 0) x)
        (t (nind (1- x)))))

Induction on natural numbers

(defunc true-listp (l) 
  :ic t
  :oc (booleanp (true-listp l))
  (if (consp l)
      (true-listp (rest l))
     (equal l () )))

Induction on true lists

(defunc tree-ind (x) 
  :input-contract t
  :output-contract t 
  (cond ((atom x) x)
        (t (list (tree-ind (car x))
                 (tree-ind (cdr x))))))

Induction on trees

Common themes: 

Induction on data definitions

Induction on functions in conjectures

Custom inductions

Can direct ACL2s to use specific 
induction scheme

Can turn if into cond
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Professional Method
(defunc app (a b)
  :input-contract (and (tlp a) (tlp b))
  :output-contract (tlp (app a b))
  (if (endp a)
      b
    (cons (car a) 
          (app (cdr a) b))))

(defunc rev (x)
  :input-contract (tlp x)
  :output-contract (tlp (rev x))
  (if (endp x)
      nil
    (app (rev (cdr x))
         (list (car x)))))

Prove: (rev (rev x)) = x  No quite right, why?

Prove: (tlp x) ⇒ (rev (rev x)) = x Contract completion! 
Professional Method: use abbreviations, discover induction scheme

We’ll induct on (... x). Base case is trivial, so go to induction step
          (R (R x))
= {Def R} (R (A (R (cdr x)) (L (car x))))     
= {L1}    (A (R (L (car x))) (R (R (cdr x))))
= {IH}    (A (R (L (car x))) (cdr x))
= {Def R} (A (L (car x)) (cdr x))
= {Def A} x

Hm, to use IH, need lemma

L1.(R (A x y)) = (A (R y) (R x))

Now I can use IH
Just equational reasoning

What Induction scheme? 
(tlp x) or (rev x): minor differences
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Professional Method
(defunc app (a b)
  :input-contract (and (tlp a) (tlp b))
  :output-contract (tlp (app a b))
  (if (endp a)
      b
    (cons (car a) 
          (app (cdr a) b))))

(defunc rev (x)
  :input-contract (tlp x)
  :output-contract (tlp (rev x))
  (if (endp x)
      nil
    (app (rev (cdr x))
         (list (car x)))))

Prove: (tlp x) ∧ (tlp y) ⇒ (R (A x y)) = (A (R y) (R x))

Professional Method: induct on?

Start with induction step

          (R (A x y))
= {Def A} (R (cons (car x) (A (cdr x) y)))
= {Def R} (A (R (A (cdr x) y)) (L (car x)))
= {IH}    (A (A (R y) (R (cdr x))) (L (car x)))
= {Ass A} (A (R y) (A (R (cdr x)) (L (car x))))
= {Def R} (A (R y) (R x))

What Induction scheme? 
(tlp x) or (rev x): minor differences

Base case?
          (R (A x y))
= {Def A} (R y)

          (A (R y) (R x))
= {Def R} (A (R y) nil)
= {L2!}   (R y)

L2: (A x nil) = x
Needs proof by induction!

x controls both LHS, RHS, so probably x

Ass A: (A (A x y) z) = (A x (A y z))
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Defun vs Defunc
Defunc is defined in terms of defun


Defun doesn’t have contracts and you get a total function

Defun has guards, which are similar to input contracts


but they do not have a logical meaning 

For example the defun version is non-terminating

(defunc !(x)
  :input-contract (natp x)
  :output-contract (posp (! x))
  (if (= x 0)
      1
    (* x (! (1- x)))))

(defun !(x)
  (declare (xargs :guard (natp x)))
  (if (= x 0)
      1
    (* x (! (1- x)))))
(defun !(x)
  (declare (xargs :guard (natp x)))
  (if (zp x)
      1
    (* x (! (1- x)))))

As per CAR, use the appropriate 
idiom, eg:


