
Lecture 4

Pete Manolios

Northeastern

Computer Aided Reasoning, Lecture 4

Slides by Pete Manolios for CS4820

Equality
Equality (equal, or =) is an equivalence relation

Reflexivity: x = x

Symmetry of Equality: x = y ⇒ y = x

Transitivity of Equality: x = y ∧ y = z ⇒ x = z

Equality Axiom Schema for Functions: For every function symbol f of arity n
we have the axiom

x1 = y1 ∧ ... ∧ xn = yn ⇒ (f x1 ... xn) = (f y1 ... yn)

In ACL2, we would write (len (cons x z)) = (len (cons y z)) as

(equal (len (cons x z))
 (len (cons y z)))
= and ≠ bind more tightly than any of the propositional operators

Slides by Pete Manolios for CS4820

Built-in Functions
Axioms for built-in functions, such as cons, car, and cdr

Axioms are theorems we get for “free” characterizing cons, car, cdr,
consp, if, equal, etc.

(car (cons x y)) = x
(cdr (cons x y)) = y

(consp (cons x y)) = t

x = nil ⇒ (if x y z) = z

x ≠ nil ⇒ (if x y z) = y

Reason about constant expressions using evaluation

t ≠ nil, (cons 1 ()) = (list 1), 3/9 = 1/3, () = ’nil, …

Note: from the the semantics of the built-in functions

Slides by Pete Manolios for CS4820

Built-in Functions
Propositional Logic

(not p) = (if p nil t)

(implies p q) = (if p (if q t nil) t)

(iff p q) = (if p (if q t nil) (if q nil t))

By embedding propositional calculus and = in term language, terms (τ)
can be interpreted as formulas (τ ≠ nil)

e.g., x as a formula is x ≠ nil

(foo x y z) as a formula is (foo x y z)≠ nil

Similarly, we add axioms for numbers, strings, etc.

This is all in GZ, the “ground-zero theory”

Slides by Pete Manolios for CS4820

Instantiation
A substitution σ is a list of the form ((var1 term1) … (varn termn))

the vars are the “targets” (no repetitions) and the terms are their “images”

by f|σ we mean, substitute every free occurrence of a target by its image

(cons x (let ((y z)) y))|((x a) (y b) (z c) (w d)) =
(cons a (let ((y c)) y))

Instantiation: If f is a theorem, so is f|σ

(len (list x)) = 1 is theorem, so is (len (list (list x y))) = 1

Are the following substitutions correct?

(cons 'a b)|((a (cons a (list c))) (b (cons c nil)))

(cons 'a (cons c nil))

(cons x (f x y f))|((x (cons a b)) (f x) (y (app y x)))

(cons (cons a b) (f (cons a b) (app y x) x))

Slides by Pete Manolios for CS4820

Inference Rules
Evaluation

Propositional calculus validities

Includes exportation, Modus Ponens, Proof by contradiction, …

Equality axioms

equality is an equivalence relation, equality schema for functions

Instantiation

Start with built-in axioms

New axioms are added via definitional principle

Also defaxiom, defchoose, encapsulation, etc can add axioms

Slides by Pete Manolios for CS4820

How to Prove Theorems
Once you are done with contract checking, completion & generalization

Extract the context by rewriting the conjecture into the form:
[C1 ∧ C2 ∧ … ∧ Cn] ⇒ RHS where there are as many hyps as possible

Derived context. What obvious things follow? Common patterns:

(endp x), (true-listp x): x=nil

(true-listp x), (consp x): (true-listp (rest x))

φ1 ∧… ∧ φn ⇒ ψ: Derive φ1,…,φn and use MP to ψ

Proof. Use the proof format from RAP.

For equality, start with LHS/RHS and end with RHS/LHS or start w/ LHS
& reduce, then start w/ RHS & reduce to the same thing

For transitive relation (⇒, <, ≤, …) same proof format works

For anything else reduce to t

Slides by Pete Manolios for CS4820

Equational Reasoning
(implies (and (true-listp x)
 (true-listp y))
 (implies (and (consp x)
 (not (equal a (first x)))
 (implies (true-listp (rest x))
 (implies (in a (rest x))
 (in a (app (rest x) y)))))
 (implies (in a x)
 (in a (app x y)))))

Contract completion adds hypotheses.

Slides by Pete Manolios for CS4820

ER Example
(implies (and (true-listp x)
 (true-listp y))
 (implies (and (consp x)
 (not (equal a (first x)))
 (implies (true-listp (rest x))
 (implies (in a (rest x))
 (in a (app (rest x) y)))))
 (implies (in a x)
 (in a (app x y)))))

Next: Prepare context

Slides by Pete Manolios for CS4820

ER Example
(implies (and (true-listp x)
 (true-listp y))
 (implies (and (consp x)
 (not (equal a (first x)))
 (implies (true-listp (rest x))
 (implies (in a (rest x))
 (in a (app (rest x) y)))))
 (implies (in a x)
 (in a (app x y)))))

Exportation: A ⇒ (B ⇒ C) ≡ (A ∧ B) ⇒ C

A

B

C

Slides by Pete Manolios for CS4820

ER Example
(implies (and (true-listp x)
 (true-listp y)
 (consp x)
 (not (equal a (first x)))
 (implies (true-listp (rest x))
 (implies (in a (rest x))
 (in a (app (rest x) y)))))
 (implies (in a x)
 (in a (app x y)))))

Exportation: A ⇒ (B ⇒ C) ≡ (A ∧ B) ⇒ C

A

B

C

Slides by Pete Manolios for CS4820

ER Example
(implies (and (true-listp x)
 (true-listp y)
 (consp x)
 (not (equal a (first x)))
 (implies (true-listp (rest x))
 (implies (in a (rest x))
 (in a (app (rest x) y)))))
 (implies (in a x)
 (in a (app x y)))))

Slides by Pete Manolios for CS4820

ER Example
(implies (and (true-listp x)
 (true-listp y)
 (consp x)
 (not (equal a (first x)))
 (implies (true-listp (rest x))
 (implies (in a (rest x))
 (in a (app (rest x) y)))))
 (implies (in a x)
 (in a (app x y)))))

Exportation again: A ⇒ (B ⇒ C) ≡ (A ∧ B) ⇒ C

A

B
C

Slides by Pete Manolios for CS4820

ER Example
(implies (and (true-listp x)
 (true-listp y)
 (consp x)
 (not (equal a (first x)))
 (implies (true-listp (rest x))
 (implies (in a (rest x))
 (in a (app (rest x) y))))
 (in a x))
 (in a (app x y)))))

Exportation again: A ⇒ (B ⇒ C) ≡ (A ∧ B) ⇒ C

A

B
C

Slides by Pete Manolios for CS4820

ER Example
(implies (and (true-listp x)
 (true-listp y)
 (consp x)
 (not (equal a (first x)))
 (implies (true-listp (rest x))
 (implies (in a (rest x))
 (in a (app (rest x) y))))
 (in a x))
 (in a (app x y)))))

Slides by Pete Manolios for CS4820

ER Example
(implies (and (true-listp x)
 (true-listp y)
 (consp x)
 (not (equal a (first x)))
 (implies (true-listp (rest x))
 (implies (in a (rest x))
 (in a (app (rest x) y))))
 (in a x))
 (in a (app x y)))))

Exportation again: A ⇒ (B ⇒ C) ≡ (A ∧ B) ⇒ C

B
C

A

Slides by Pete Manolios for CS4820

ER Example
(implies (and (true-listp x)
 (true-listp y)
 (consp x)
 (not (equal a (first x)))
 (implies (and (true-listp (rest x))
 (in a (rest x)))
 (in a (app (rest x) y)))
 (in a x))
 (in a (app x y)))))

Exportation again: A ⇒ (B ⇒ C) ≡ (A ∧ B) ⇒ C

B
C

A

Slides by Pete Manolios for CS4820

ER Example
(implies (and (true-listp x)
 (true-listp y)
 (consp x)
 (not (equal a (first x)))
 (implies (and (true-listp (rest x))
 (in a (rest x)))
 (in a (app (rest x) y)))
 (in a x))
 (in a (app x y)))))

Notice that we cannot use exportation in the 5th hypothesis

Slides by Pete Manolios for CS4820

ER Example

C1. (true-listp x)
C2. (true-listp y)
C3. (consp x)
C4. a ≠ (first x)
C5. (true-listp (rest x)) ∧ (in a (rest x))
 ⇒ (in a (app (rest x) y))

C6. (in a x)
——-——————
C7. (true-listp (rest x)) { C1, Def true-listp, C3 }
C8. (in a (rest x)) { C6, Def in, C3, C4, PL }
C9. (in a (app (rest x) y)) { C5, C7, C8, MP }

(implies
 (and (true-listp x)
 (true-listp y)
 (consp x)
 (not (equal a (first x)))
 (implies (and (true-listp (rest x))
 (in a (rest x)))
 (in a (app (rest x) y)))
 (in a x))
 (in a (app x y)))))

(defunc in (a X)
 :input-contract (true-listp x)
 :output-contract (booleanp (in a X))
 (if (endp x)
 nil
 (or (equal a (first X))
 (in a (rest X)))))

(defunc true-listp (l)
 :ic t
 :oc (booleanp (true-listp l))
 (if (consp l)
 (true-listp (rest l))
 (equal l ())))

Slides by Pete Manolios for CS4820

ER Example
C1. (true-listp x)
C2. (true-listp y)
C3. (consp x)
C4. a ≠ (first x)
C5. (true-listp (rest x)) ∧ (in a (rest x))
 ⇒ (in a (app (rest x) y))
C6. (in a x)
——-——————
C7. (true-listp (rest x)) { C1, Def true-listp, C3 }
C8. (in a (rest x)) { C6, Def in, C3, C4, PL }
C9. (in a (app (rest x) y)) { C5, C7, C8, MP }

 (in a (app x y))
= { Def app }
 (in a (cons (first x) (app (rest x) y)))
= { Def in, first-rest-cons axioms }
 (or (equal a (first x)) (in a (app (rest x) y)))
= { C9, PL }
 t

(defunc in (a X)
 :input-contract (true-listp x)
 :output-contract (booleanp (in a X))
 (if (endp x)
 nil
 (or (equal a (first X))
 (in a (rest X)))))

(defunc true-listp (l)
 :ic t
 :oc (booleanp (true-listp l))
 (if (consp l)
 (true-listp (rest l))
 (equal l ())))

Slides by Pete Manolios for CS4820

Induction Schemes
Given a function definition of the form:

If ci contains a call to f, we say it is a recursive case

else it is a base case

Let tm+1 be t.
Let Casei be ti ∧ ¬tj for all j< i
︎The function f gives rise to the following induction scheme:

 To prove φ, you can instead prove

1. ¬ic ⇒ φ

2. For all ci that are base cases: [ic ∧ Casei] ⇒ φ

3. For all ci that are recursive cases: [ic ∧ Casei ∧ ︎1≤j≤Ri φ|σij] ⇒ φ

If ci is a recursive case, then it includes at least one call to f.
Say there are Ri calls to f and they are (f x1 . . . xn)|σij , for 1 ≤ j ≤ Ri

(defunc f (x1 . . . xn)
 :input-contract ic
 :output-contract oc
 (cond (t1 c1)
 (t2 c2)
 ...
 (tm cm)
 (t cm+1)))

Slides by Pete Manolios for CS4820

Induction Schemes
(defunc nind (x)
 :input-contract (natp x)
 :output-contract t
 (cond ((= x 0) x)
 (t (nind (1- x)))))

Induction on natural numbers

(defunc true-listp (l)
 :ic t
 :oc (booleanp (true-listp l))
 (if (consp l)
 (true-listp (rest l))
 (equal l ())))

Induction on true lists

(defunc tree-ind (x)
 :input-contract t
 :output-contract t
 (cond ((atom x) x)
 (t (list (tree-ind (car x))
 (tree-ind (cdr x))))))

Induction on trees

Common themes:

Induction on data definitions

Induction on functions in conjectures

Custom inductions

Can direct ACL2s to use specific
induction scheme

Can turn if into cond

Slides by Pete Manolios for CS4820

Professional Method
(defunc app (a b)
 :input-contract (and (tlp a) (tlp b))
 :output-contract (tlp (app a b))
 (if (endp a)
 b
 (cons (car a)
 (app (cdr a) b))))

(defunc rev (x)
 :input-contract (tlp x)
 :output-contract (tlp (rev x))
 (if (endp x)
 nil
 (app (rev (cdr x))
 (list (car x)))))

Prove: (rev (rev x)) = x No quite right, why?

Prove: (tlp x) ⇒ (rev (rev x)) = x Contract completion!
Professional Method: use abbreviations, discover induction scheme

We’ll induct on (... x). Base case is trivial, so go to induction step
 (R (R x))
= {Def R} (R (A (R (cdr x)) (L (car x))))
= {L1} (A (R (L (car x))) (R (R (cdr x))))
= {IH} (A (R (L (car x))) (cdr x))
= {Def R} (A (L (car x)) (cdr x))
= {Def A} x

Hm, to use IH, need lemma

L1.(R (A x y)) = (A (R y) (R x))

Now I can use IH
Just equational reasoning

What Induction scheme?
(tlp x) or (rev x): minor differences

Slides by Pete Manolios for CS4820

Professional Method
(defunc app (a b)
 :input-contract (and (tlp a) (tlp b))
 :output-contract (tlp (app a b))
 (if (endp a)
 b
 (cons (car a)
 (app (cdr a) b))))

(defunc rev (x)
 :input-contract (tlp x)
 :output-contract (tlp (rev x))
 (if (endp x)
 nil
 (app (rev (cdr x))
 (list (car x)))))

Prove: (tlp x) ∧ (tlp y) ⇒ (R (A x y)) = (A (R y) (R x))

Professional Method: induct on?

Start with induction step

 (R (A x y))
= {Def A} (R (cons (car x) (A (cdr x) y)))
= {Def R} (A (R (A (cdr x) y)) (L (car x)))
= {IH} (A (A (R y) (R (cdr x))) (L (car x)))
= {Ass A} (A (R y) (A (R (cdr x)) (L (car x))))
= {Def R} (A (R y) (R x))

What Induction scheme?
(tlp x) or (rev x): minor differences

Base case?
 (R (A x y))
= {Def A} (R y)

 (A (R y) (R x))
= {Def R} (A (R y) nil)
= {L2!} (R y)

L2: (A x nil) = x
Needs proof by induction!

x controls both LHS, RHS, so probably x

Ass A: (A (A x y) z) = (A x (A y z))

Slides by Pete Manolios for CS4820

Defun vs Defunc
Defunc is defined in terms of defun

Defun doesn’t have contracts and you get a total function

Defun has guards, which are similar to input contracts

but they do not have a logical meaning

For example the defun version is non-terminating

(defunc !(x)
 :input-contract (natp x)
 :output-contract (posp (! x))
 (if (= x 0)
 1
 (* x (! (1- x)))))

(defun !(x)
 (declare (xargs :guard (natp x)))
 (if (= x 0)
 1
 (* x (! (1- x)))))
(defun !(x)
 (declare (xargs :guard (natp x)))
 (if (zp x)
 1
 (* x (! (1- x)))))

As per CAR, use the appropriate
idiom, eg:

