Lecture 4

Pete Manolios Northeastern

Computer Aided Reasoning, Lecture 4

Equality

* Equality (equal, or =) is an equivalence relation
* Reflexivity: $\quad \mathrm{x}=\mathrm{x}$
- Symmetry of Equality: $x=y \Rightarrow y=x$
- Transitivity of Equality: $x=y \wedge y=z \Rightarrow x=z$
- Equality Axiom Schema for Functions: For every function symbol f of arity n we have the axiom
$\otimes x_{1}=y_{1} \wedge \ldots \wedge x_{n}=y_{n} \Rightarrow\left(f x_{1} \ldots x_{n}\right)=\left(f y_{1} \ldots y_{n}\right)$
- In ACL2, we would write (len (cons x z)) $=(\operatorname{len}(\operatorname{cons} y z)$) as (equal (len (cons x z))
(len (cons y z)))
* = and \neq bind more tightly than any of the propositional operators

Built-in Functions

- Axioms for built-in functions, such as cons, car, and cdr
* Axioms are theorems we get for "free" characterizing cons, car, cdr , consp, if, equal, etc.
- $(\operatorname{car}(\operatorname{cons} x y))=x$
- $(c d r(\operatorname{cons} x y))=y$
- (consp $($ cons $x y))=t$
* $x=n i l \Rightarrow(i f x y z)=z$
$\Delta x \neq \mathrm{nil} \Rightarrow($ if $\mathrm{x} y \mathrm{z})=\mathrm{y}$
- Reason about constant expressions using evaluation

$$
\otimes t \neq \operatorname{nil},(\text { cons } 1())=(l i s t 1), 3 / 9=1 / 3,()=\text { nil, } . .
$$

- Note: from the the semantics of the built-in functions

Built-in Functions

- Propositional Logic
* (not p$)=($ if p nil t$)$
- (implies p q) $=($ if $p($ if q t nil) $)$
- (iff p q) $=$ (if p (if q t nil) (if q nil t))
* By embedding propositional calculus and = in term language, terms (τ) can be interpreted as formulas ($\tau \neq$ nil $)$
- e.g., x as a formula is $x \neq$ nil
* (foo x y z) as a formula is (foo x y z) \neq nil
- Similarly, we add axioms for numbers, strings, etc.
* This is all in GZ, the "ground-zero theory"

Instantiation

- A substitution σ is a list of the form ((var term $_{1}$) ... (var term $\left._{n}\right)$)
b the vars are the "targets" (no repetitions) and the terms are their "images"
- by $f \mid \sigma$ we mean, substitute every free occurrence of a target by its image
- (cons $x(l e t((y z)) y)) \mid((x a)(y b)(z ~ c)(w d))=$ (cons a (let $((y \mathrm{c}) \mathrm{)} \mathrm{y})$)
- Instantiation: If f is a theorem, so is $f \mid \sigma$
- (len (list x$))=1$ is theorem, so is (len (list (list $\mathrm{x} y)$)) $=1$
- Are the following substitutions correct?
- (cons 'a b)।((a (cons a (list c))) (b (cons c nil)))
- (cons 'a (cons c nil))
- (cons x (f x y f)) I((x (cons ab)) (f x) (y (app y x)))
- (cons (cons ab) (f (cons ab) (app y x) x))

Inference Rules

- Evaluation
- Propositional calculus validities
- Includes exportation, Modus Ponens, Proof by contradiction, ...
- Equality axioms
- equality is an equivalence relation, equality schema for functions
- Instantiation
- Start with built-in axioms
- New axioms are added via definitional principle
- Also defaxiom, defchoose, encapsulation, etc can add axioms

How to Prove Theorems

- Once you are done with contract checking, completion \& generalization
- Extract the context by rewriting the conjecture into the form:
$[\mathrm{C} 1 \wedge \mathrm{C} 2 \wedge \ldots \wedge \mathrm{Cn}] \Rightarrow$ RHS where there are as many hyps as possible
- Derived context. What obvious things follow? Common patterns:
* (endp x), (true-listp x): x=nil
- (true-listp x), (consp x): (true-listp (rest x))
- $\phi_{1} \wedge \ldots \wedge \phi_{\mathrm{n}} \Rightarrow \psi$: Derive $\phi_{1}, \ldots, \phi_{\mathrm{n}}$ and use MP to ψ
- Proof. Use the proof format from RAP.
* For equality, start with LHS/RHS and end with RHS/LHS or start w/ LHS \& reduce, then start w/ RHS \& reduce to the same thing
- For transitive relation ($\Rightarrow,<, \leq, \ldots$) same proof format works
* For anything else reduce to t

Equational Reasoning

```
(implies (and (true-listp x)
    (true-listp y))
    (implies (and (consp x)
        (not (equal a (first x)))
        (implies (true-listp (rest x))
        (implies (in a (rest x))
                                (in a (app (rest x) y)))))
    (implies (in a x)
        (in a (app x y)))))
```

Contract completion adds hypotheses.

Slides by Pete Manolios for CS4820

ER Example

```
(implies (and (true-listp x)
    (true-listp y))
    (implies (and (consp x)
        (not (equal a (first x)))
        (implies (true-listp (rest x))
        (implies (in a (rest x))
                                (in a (app (rest x) y)))))
    (implies (in a x)
        (in a (app x y)))))
```

Next: Prepare context

Slides by Pete Manolios for CS4820

ER Example

Exportation: $A \Rightarrow(B \Rightarrow C) \equiv(A \wedge B) \Rightarrow C$

Slides by Pete Manolios for CS4820

ER Example

Exportation: $A \Rightarrow(B \Rightarrow C) \equiv(A \wedge B) \Rightarrow C$

Slides by Pete Manolios for CS4820

ER Example

```
(implies (and (true-listp x)
    (true-listp y)
    (consp x)
    (not (equal a (first x)))
    (implies (true-listp (rest x))
    (implies (in a (rest x))
    (in a (app (rest x) y)))))
    (implies (in a x)
    (in a (app x y)))))
```

Slides by Pete Manolios for CS4820

ER Example

Exportation again: $A \Rightarrow(B \Rightarrow C) \equiv(A \wedge B) \Rightarrow C$

Slides by Pete Manolios for CS4820

ER Example

Exportation again: $A \Rightarrow(B \Rightarrow C) \equiv(A \wedge B) \Rightarrow C$

Slides by Pete Manolios for CS4820

ER Example

```
(implies (and (true-listp x)
    (true-listp y)
    (consp x)
    (not (equal a (first x)))
    (implies (true-listp (rest x))
    (implies (in a (rest x))
    (in a (app (rest x) y))))
    (in a x))
    (in a (app x y)))))
```

Slides by Pete Manolios for CS4820

ER Example

```
(implies (and (true-listp x)
    (true-listp y)
    (consp x)
    (not (equal a (first x)))
    (implies (true-listp (rest x)) A
    (implies (in a (rest x))B
                            (in a (app (rest x) y)))) C
    (in a x))
    (in a (app x y)))))
```

Exportation again: $A \Rightarrow(B \Rightarrow C) \equiv(A \wedge B) \Rightarrow C$

Slides by Pete Manolios for CS4820

ER Example

```
(implies (and (true-listp x)
    (true-listp y)
    (consp x)
    (not (equal a (first x)))
    (implies (and (true-listp (rest x)) A
                        (in a (rest x))) B
                            (in a (app (rest x) y))) C
    (in a x))
    (in a (app x y)))))
```

Exportation again: $A \Rightarrow(B \Rightarrow C) \equiv(A \wedge B) \Rightarrow C$

ER Example

```
(implies (and (true-listp x)
    (true-listp y)
    (consp x)
    (not (equal a (first x)))
    (implies (and (true-listp (rest x))
                                (in a (rest x)))
        (in a (app (rest x) y)))
    (in a x))
    (in a (app x y)))))
```

Notice that we cannot use exportation in the $5^{\text {th }}$ hypothesis

Slides by Pete Manolios for CS4820

ER Example
(defunc in (a X)
:input-contract (true-listp x)
:output-contract (booleanp (in a X))
(if (endp x) nil (or (equal a (first X)) (in a (rest X)))))
C1. (true-listp x)
C2. (true-listp y)
C3. (consp x)
C4. $a \neq$ (first x)
C5. (true-listp (rest x)) ^(in a (rest x)) $\Rightarrow($ in $a(\operatorname{app}($ rest $x) y))$
C6. (in $a x$)
C7. $($ true-listp $($ rest $x)) \begin{aligned} & \{C 1, \text { Def true-listp, C3 }\} \\ & \text { \{ C6, Def in, C3, C4, PL }\}\end{aligned}$
C8. (in a (rest x)) \{C6, Def in, C3, C4, PL \}
C9. (in a (app (rest x) y)) \{ C5, C7, C8, MP \}

ER Example

C1. (true-listp x)
C2. (true-listp y)
C3. (consp x)
C4. $a \neq$ (first x)
C5. (true-listp $($ rest $x)) \wedge($ in $a($ rest $x))$ $\Rightarrow($ in a (app (rest x) y))
C6. (in $a x$)
(defunc in (a X)
:input-contract (true-listp x)
:output-contract (booleanp (in a X))
(if (endp x)
nil
(or (equal a (first X))
(in a (rest X)))))

C7. (true-listp (rest x)) \{ C1, Def true-listp, C3 \}
C8. (in a (rest x)) \{ C6, Def in, C3, C4, PL \}
C9. (in a (app (rest x) y)) \{ C5, C7, C8, MP \}
(defunc true-listp (l)
:ic t

```
(in a (app x y))
\(=\{\) Def app \(\}\) (if (consp l)
\(=\) \{ Def in, first-rest-cons axioms \} (equal l () )))
    (or (equal a (first x)) (in a (app (rest x) y)))
\(=\mathrm{t}_{\mathrm{t}}\{\mathrm{C} 9, \mathrm{PL}\}\)
```

 :oc (booleanp (true-listp l))
 (in a (cons (first x) (app (rest x) y))) (true-listp (rest l))

Induction Schemes

- Given a function definition of the form:
- If ci contains a call to f, we say it is a recursive case b else it is a base case
- Let $t m+1$ be t.
- Let Casei be $t i \wedge \neg t j$ for all $j<i$
- The function f gives rise to the following induction scheme:

```
(defunc f (x1 . . . xn)
```

 :input-contract ic
 :output-contract oc
 (cond (t1 c1)
 (t2 c2)
 (tm cm)
 - To prove ϕ, you can instead prove
-1. $\neg i c \Rightarrow \phi$
- 2. For all ci that are base cases: [ic \wedge Casei] $\Rightarrow \phi$

В 3. For all ci that are recursive cases: [ic \wedge Casei $\wedge 1 \leq j \leq R i \phi \mid \sigma i j] \Rightarrow \phi$

- If $c i$ is a recursive case, then it includes at least one call to f.
- Say there are Ri calls to f and they are ($f \times 1$. . . xn) \mid oij, for $1 \leq j \leq R i$

Induction Schemes

```
(defunc nind (x)
    :input-contract (natp x)
    :output-contract t
    (cond ((= x 0) x)
        (t (nind (1- x)))))
```

Induction on natural numbers
(defunc tree-ind (x)
:input-contract t
:output-contract t
(cond ((atom x) x)
(t (list (tree-ind (car x))
(tree-ind $(c d r x))))$)

Induction on trees
(defunc true-listp (l)
:ic t
:oc (booleanp (true-listp l))
(if (consp l)
(true-listp (rest l))
(equal l ()))
Induction on true lists
Can turn if into cond
Common themes:
Induction on data definitions
Induction on functions in conjectures
Custom inductions
Can direct ACL2s to use specific induction scheme

Slides by Pete Manolios for CS4820

Professional Method

```
(defunc app (a b)
    :input-contract (and (tlp a) (tlp b))
    :output-contract (tlp (app a b))
    (if (endp a)
        b
        (cons (car a)
                        (app (cdr a) b))))
```

```
(defunc rev (x)
    :input-contract (tlp x)
    :output-contract (tlp (rev x))
    (if (endp x)
        nil
    (app (rev (cdr x))
    (list (car x)))))
```

Prove: $(\operatorname{rev}(r e v x))=x$ No quite right, why?
Prove: (tlp x) $\Rightarrow(r e v(r e v x))=x$ Contract completion!
Professional Method: use abbreviations, discover induction scheme
We'll induct on (... x). Base case is trivial, so go to induction step
(R (R x))
$=\{\operatorname{Def} R\}(R(A(R(c d r x))(L(c a r x)))) \quad H m$, to use IH, need lemma
$=\{L 1\} \quad(A(R(L(\operatorname{car} x)))(R(R(c d r x))))$ Now I can use IH
$=\{I H\} \quad(A(R(L(\operatorname{car} x)))(\operatorname{cdr} x)) \quad J u s t ~ e q u a t i o n a l ~ r e a s o n i n g$
$=\{\operatorname{Def} R\}(A(L \quad(c a r x))(c d r x))$
$=\{\operatorname{Def} \mathrm{A}\} \mathrm{x}$
L1. (R (A x y)) = (A (Ry) (R x))
What Induction scheme?
(tlp x) or (rev x): minor differences
Slides by Pete Manolios for CS4820

Professional Method

```
(defunc app (a b)
    :input-contract (and (tlp a) (tlp b))
    :output-contract (tlp (app a b))
    (if (endp a)
        b
        (cons (car a)
                        (app (cdr a) b))))
    :input-contract (tlp x)
    :output-contract (tlp (rev x))
    (if (endp x)
        nil
    (app (rev (cdr x))
                                    (list (car x)))))
Prove: (tlp x) ^ (tlp y) = (R (A x y)) = (A (R y) (R x))
Professional Method: induct on? x controls both LHS, RHS, so probably x
Start with induction step
                                    Base case?
```

(defunc rev (x)

(R (A x y))	(R (A $\times \mathrm{y}$))
$=\{$ Def $A\}(R(\operatorname{cons}(\operatorname{car} x)(A(c d r x) y))$)	$=\{\operatorname{Def} A\}(R y)$
$=\{I H\} \quad(A(A(R y)(R(c d r x)))(L(\operatorname{car} x)))$	(A (R y) ($\mathrm{R} x$))
$=\{$ Ass $A\}(A(R y)(A(R(c d r x))(L(\operatorname{car} x))$)	$=\{$ Def R\} (A (R y) nil)
$=\{\operatorname{Def~R~}\}(A(R y)(R x))$	$=\{L 2!\} \quad(\mathrm{Ry})$
Ass A : $(A(A x y) z)=(A x(A y z))$	
hat Induction scheme?	L2: ($A \times n i l)=x$
(tp x) or (rev x): minor differences	Needs proof by induction

Slides by Pete Manolios for CS4820

Defun vs Defunc

* Defunc is defined in terms of defun
- Defun doesn't have contracts and you get a total function
- Defun has guards, which are similar to input contracts
* but they do not have a logical meaning
* For example the defun version is non-terminating

```
(defunc !(x)
    :input-contract (natp x)
    :output-contract (posp (! x))
    (if (= x 0)
        1
        (* x (! (1- x)))))
```

- As per CAR, use the appropriate idiom, eg:

```
(defun !(x)
    (declare (xargs :guard (natp x)))
    (if (= x 0)
        1
            (* x (! (1- x)))))
(defun !(x)
    (declare (xargs :guard (natp x)))
    (if (zp x)
        1
            (* x (! (1- x)))))
```

Slides by Pete Manolios for CS4820

