Lecture 21

Pete Manolios
Northeastern

Computer-Aided Reasoning, Lecture 21



Presentation/Project Schedule

11/27
>  Ben B (40 min)

?  Dustin (40 min) Meet with me to review slides
> Alex (20 min) at least 3 days before your
11/30 presentations

> Ankit (40 min)

>  Taylor (20 min)

» Nathaniel (20 min)
> Daniel (20 min)
12/4

>  Michael (20 min)

Exam 2:
Distribute 11/30 after class

> Drew (40 min) Due 12/1 by 3PM (email)

> Ben Q (40 min)

Slides by Pete Manolios for CS4820



Recall: Sequent Rules

Reflexivity Rule for Equality (=)

t=1
Substitution Rule for Equality (Sub)

> Can derive that equality is symmetric and transitive (so equivalence)
> Can derive that equality is a congruence

> Suppose O is a set of equations (universal formulas of the form s = 1)
and ¢ is an equation

> Then, ® = ¢ iff ® - ¢ where we only use Assm, Sub, equivalence
and congruence rules (Birkhoff’s theorem)

2 More on this soon
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Equality Decision Procedure

Consider a universal formula (vxy,...,.xn ®(x1,...,Xn)> Which does not
contain any predicates, but can contain =, vars, functions, constants

The formula is valid iff (3x7,...,xn "®(x71,...,Xn)) is Unsat

Iff =p(c,...,cn) is Unsat, via Skolemization

We can generate equivalent DNF: 1(cy,...,cn) v === v P(C1,...,Cn)
Which is Unsat iff i(cy,...,cn) is Unsat for all i (there are no vars)
Note: Qi(c1,...,Cn) is of the form s1=t1 A *** A SI=U A U12VI A+ A UmZEVm
Which is Unsat iff si=t1 A - A Si=t = U1=v1V = v Um=Vmis Valid

[ff for some J, s1=t1 A -+ A S=t) = uj=v;is Valid

So, we can reduce validity of FO formulas with no predicates to
validity of equational logic with ground terms:

> O = s=t where s=t and all elements of ® are ground equations

> By Birkhoff’s theorem, equivalent to ® — ¢ where we only use
Assm, Sub (no vars), equivalence and congruence rules



Reduction to Propositional Logic

Ackermann’s idea: reduce the problem to propositional logic
Consider: f(f(f(c)))=c A f(f(c))=c = f(c) = c (Valid or not?)

Remove functions: Introduce variables for subterms, say xx=fk(c) for
O<k<3 and add constraints for congruence properties over subterms
P X3=X0 A X2=X0 A (Xo=X1 = X1=X2) A (Xo=X2 = X1=X3) A (X1=X2 = X2=X3)
» Check if this implies x1=xo

Remove =: replace equations, say s=t, with propositional atoms, say
Ps,:, and add constraints for equivalence properties (Ps,t A Pty = Psu)
Now, we can use a propositional SAT solver



Ackermann Example

Consider: f(f(f(c)))=c A f(f(c))=c = f(c)=c
Remove functions: Introduce variables for subterms, say
> xx=fk(c) for O<k<3, so: xo=c, x1=f(c), xo=f(f(c)), x3=F(f(f(C)))

> Rewrite problem: x3=Xo A Xo=Xo0 = X1=Xo

Add hyps: constraints for congruence properties over subterms

P (Xo=X1 = X1=X2) A (Xo=X2 = X1=X3) A (X1=X2 = X2=X3)

> Note (Xo=x3 = X1=X4), etc not needed since xsis not a subterm
Remove =: replace equations with propositional atoms

? P3oA P2on (Po1= P1,2) A (Po2= P1,3) A (P1,2= P23) = P10

Add equivalence properties (as hyps) Finish the reduction

> PooA P11AP22A PsgA Optimizations?
B (Po,1=P1,0)A(Po,2=P2,0)A(Po,3=P23,0) A(P1,2=P2,1) A(P1,3=P3,1) A(P2,3=P3,2) A
P (P1,0APo,2=P1,2) A(P1,0AP0,3=P1,3) A(P2,0APo,3=>P2,3) A(Po,1AP1,2=Po,2) A

) )
(Po,1AP1,3=P0,3) A(P2,1AP1,3=P2,3) A(Po,2AP2,1=>Po,1) A(Po,2AP2,3=Po,3) A
(P1,2AP2,3=P1,3)A(Po,3AP3,1=Po,1) A(Po,3AP3,2=Po,2) A(P1,3AP3,2=P1 2)



Congruence Closure

Decision procedure for @ = s=t where s=t and all elements of ® are
ground equations

Let G be a set of terms closed under subterms
P |f teG and s is a subterm of t, then teG
~ is a congruence on G: an equivalence, congruence on terms in G

For RcGx@, the congruence closure of R on G is the smallest
congruence on G extending R

> Start with R and apply equivalence, congruence rules until fixpoint

Let ®={s1=t1, ..., sn=tn}, G is the minimal set closed under subterms of
{s1, t1,..., Sn, tn, S, t}, ~ the congruence closure of ® on G. Then:

? Q= s=tiff s~t
2 Can do this in P-time
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Congruence Closure Algorithm

Decision procedure for ®@ = s=t where s=t and all elements of ® are
ground equations

Main idea: use a graph with structure sharing to represent terms
Start with ~ being the identity

Each node (term) is mapped to its equivalence class

For each assumption, si=t;,

P merge equivalence classes [s]], [t]

> propagate congruences efficiently (using predecessor pointers)

P Check is [s] = [t] after processing all hypotheses
> O(m?2) algorithm due to Nelson, Oppen (m is the # edges in graph)



Congruence Closure Example

Consider: f(f(f(c)))=c A f(f(c))=c = f(c)=c
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So, when we extend the congruence, by
unioning [s] [t], we also have to union any
terms of the form f(...s...) and {(...t...) if the
rest of the arguments are in same class



Congruence Closure Algorithm

For each node n, we have: ~ is a congruence if
I(n): function/constant symbol of n it is an equivalence
d(n): # of successors of n (= arity I(n))  if I(n)=I(m) A Vi n[i]~m][i] then n~m
nlil: the ith successor of n
p(n) = {m | 3i m[i]~n }
c(n,m) = l(n)=Im) A Vi n[i]~mli]

merge(n, m):
if n+m then Merge all si=t;
P :=p(n); Q=p(m) Use Union-Find algorithm
Union(n,m)

for all (p,q) € PxQ do
if p+~q A c(p,q) then merge(p,q)



