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Recall: Sequent Rules

Can derive that equality is symmetric and transitive (so equivalence)

Can derive that equality is a congruence 

Suppose Φ is a set of equations (universal formulas of the form s = t) 
and φ is an equation 


Then, Φ ⊨ φ iff Φ ⊢ φ where we only use Assm, Sub, equivalence 
and congruence rules (Birkhoff’s theorem)

More on this soon



Equality Decision Procedure
Consider a universal formula ⟨∀x1,…,xn φ(x1,…,xn)⟩ which does not 
contain any predicates, but can contain =, vars, functions, constants 

The formula is valid iff ⟨∃x1,…,xn ¬φ(x1,…,xn)⟩ is Unsat

Iff ¬φ(c1,…,cn) is Unsat, via Skolemization

We can generate equivalent DNF: ψ1(c1,…,cn) ∨ ⋯ ∨ ψk(c1,…,cn) 

Which is Unsat iff ψi(c1,…,cn) is Unsat for all i (there are no vars)

Note: ψi(c1,…,cn) is of the form s1=t1 ∧ ⋯ ∧ sl=tl ∧ u1≠v1 ∧ ⋯ ∧ um≠vm 

Which is Unsat iff s1=t1 ∧ ⋯ ∧ sl=tl  ⇒ u1=v1 ∨ ⋯ ∨ um=vm is Valid

Iff for some j, s1=t1 ∧ ⋯ ∧ sl=tl  ⇒ uj=vj is Valid

So, we can reduce validity of FO formulas with no predicates to 
validity of equational logic with ground terms:


Φ ⊨ s=t where s=t and all elements of Φ are ground equations

By Birkhoff’s theorem, equivalent to Φ ⊢ φ where we only use 
Assm, Sub (no vars), equivalence and congruence rules



Reduction to Propositional Logic

Ackermann’s idea: reduce the problem to propositional logic

Consider: f(f(f(c)))=c ∧ f(f(c))=c  ⇒  f(c) = c (Valid or not?)

Remove functions: Introduce variables for subterms, say xk=fk(c) for 
0≤k≤3 and add constraints for congruence properties over subterms


x3=x0 ∧ x2=x0 ∧ (x0=x1 ⇒ x1=x2) ∧ (x0=x2 ⇒ x1=x3) ∧ (x1=x2 ⇒ x2=x3)

Check if this implies x1=x0 

Remove =: replace equations, say s=t, with propositional atoms, say 
Ps,t, and add constraints for equivalence properties (Ps,t ∧ Pt,u ⇒ Ps,u)

Now, we can use a propositional SAT solver



Ackermann Example
Consider: f(f(f(c)))=c ∧ f(f(c))=c  ⇒  f(c) = c 
Remove functions: Introduce variables for subterms, say


xk=fk(c) for 0≤k≤3, so: x0=c, x1=f(c), x2=f(f(c)), x3=f(f(f(c))) 
Rewrite problem: x3=x0 ∧ x2=x0  ⇒  x1=x0     
Add hyps: constraints for congruence properties over subterms


(x0=x1 ⇒ x1=x2) ∧ (x0=x2 ⇒ x1=x3) ∧ (x1=x2 ⇒ x2=x3)

Note (x0=x3 ⇒ x1=x4), etc not needed since x4 is not a subterm


Remove =: replace equations with propositional atoms

P3,0 ∧ P2,0 ∧ (P0,1 ⇒ P1,2) ∧ (P0,2 ⇒ P1,3) ∧ (P1,2 ⇒ P2,3) ⇒ P1,0  

Add equivalence properties (as hyps) Finish the reduction

P0,0 ∧ P1,1 ∧ P2,2 ∧ P3,3 ∧ 

(P0,1≡P1,0)∧(P0,2≡P2,0)∧(P0,3≡P3,0)∧(P1,2≡P2,1)∧(P1,3≡P3,1)∧(P2,3≡P3,2)∧ 

(P1,0∧P0,2⇒P1,2)∧(P1,0∧P0,3⇒P1,3)∧(P2,0∧P0,3⇒P2,3)∧(P0,1∧P1,2⇒P0,2)∧ 
(P0,1∧P1,3⇒P0,3)∧(P2,1∧P1,3⇒P2,3)∧(P0,2∧P2,1⇒P0,1)∧(P0,2∧P2,3⇒P0,3)∧ 
(P1,2∧P2,3⇒P1,3)∧(P0,3∧P3,1⇒P0,1)∧(P0,3∧P3,2⇒P0,2)∧(P1,3∧P3,2⇒P1,2)

Optimizations?



Congruence Closure

Decision procedure for Φ ⊨ s=t where s=t and all elements of Φ are 
ground equations

Let G be a set of terms closed under subterms


If t∈G and s is a subterm of t, then t∈G 
~ is a congruence on G: an equivalence, congruence on terms in G 
For R⊆G×G, the congruence closure of R on G is the smallest 
congruence on G extending R 

Start with R and apply equivalence, congruence rules until fixpoint

Let Φ={s1=t1, …, sn=tn}, G is the minimal set closed under subterms of 
{s1, t1, …, sn, tn, s, t}, ~ the congruence closure of Φ on G. Then:


Φ ⊨ s=t iff s~t 
Can do this in P-time 



Congruence Closure Algorithm

Decision procedure for Φ ⊨ s=t where s=t and all elements of Φ are 
ground equations

Main idea: use a graph with structure sharing to represent terms

Start with ~ being the identity

Each node (term) is mapped to its equivalence class

For each assumption, si=ti, 


merge equivalence classes [si], [ti]

propagate congruences efficiently (using predecessor pointers)


Check is [s] = [t] after processing all hypotheses

O(m2) algorithm due to Nelson, Oppen (m is the # edges in graph)



Congruence Closure Example
Consider: f(f(f(c)))=c ∧ f(f(c))=c  ⇒  f(c) = c

f

f

f

c

f(f(f(c)))=c
f(f(c))=c

f(c)=c

equivalence class of term

Graph representation  
allows structure sharing

[f(f(c))]=[c], so [f(f(f(c)))]=[f(c)] ie, 
[c]=[f(c)] 


congruence propagation

f

c

corresponds to f(c)

corresponds to c

So, when we extend the congruence, by 
unioning [s] [t], we also have to union any 
terms of the form f(…s…) and f(…t…) if the 

rest of the arguments are in same class



Congruence Closure Algorithm
For each node n, we have:

  l(n): function/constant symbol of n 
  d(n): # of successors of n (= arity l(n))

  n[i]: the ith successor of n

~ is a congruence if

  it is an equivalence 

  if l(n)=l(m) ∧ ∀i n[i]~m[i] then n~m 

p(n) = {m | ∃i m[i]~n }

c(n,m) = l(n)=l(m) ∧ ∀i n[i]~m[i]

merge(n, m):

  if n≁m then

     P := p(n); Q=p(m)

     Union(n,m)

     for all (p,q) ∈ P×Q do

         if p≁q ∧ c(p,q) then merge(p,q)

Merge all si=ti

Use Union-Find algorithm


