Lecture 21

Pete Manolios Northeastern

Computer-Aided Reasoning, Lecture 21

Presentation/Project Schedule

- ▶ 11/27
 - Ben B (40 min)
 - Dustin (40 min)
 - Alex (20 min)
- ▶ 11/30
 - Ankit (40 min)
 - Taylor (20 min)
 - Nathaniel (20 min)
 - Daniel (20 min)
- ▶ 12/4
 - Michael (20 min)
 - Drew (40 min)
 - Ben Q (40 min)

Meet with me to review slides at least 3 days before your presentations

Exam 2: Distribute 11/30 after class Due 12/1 by 3PM (email)

Slides by Pete Manolios for CS4820

Recall: Sequent Rules

Reflexivity Rule for Equality (\equiv)

 $\overline{t \equiv t}$

Substitution Rule for Equality (Sub)

$$\frac{\Gamma}{\Gamma} \qquad \frac{\varphi \frac{t}{x}}{\Gamma} \quad t \equiv t' \quad \varphi \frac{t'}{x}$$

- Can derive that equality is symmetric and transitive (so equivalence)
- Can derive that equality is a congruence
- Suppose Φ is a set of equations (universal formulas of the form s = t) and φ is an equation
 - ▶ Then, $\Phi \models \varphi$ iff $\Phi \vdash \varphi$ where we only use Assm, Sub, equivalence and congruence rules (Birkhoff's theorem)
 - More on this soon

Equality Decision Procedure

- Consider a universal formula 〈∀x₁,...,xn ϕ(x₁,...,xn)〉 which does not contain any predicates, but can contain =, vars, functions, constants
- The formula is valid iff $\langle \exists x_1, \ldots, x_n \neg \varphi(x_1, \ldots, x_n) \rangle$ is Unsat
- ▶ Iff $\neg \phi(c_1,...,c_n)$ is Unsat, via Skolemization
- ▶ We can generate equivalent DNF: $\psi_1(c_1,...,c_n) \lor \cdots \lor \psi_k(c_1,...,c_n)$
- Note: Which is Unsat iff $\psi_i(c_1,...,c_n)$ is Unsat for all *i* (there are no vars)
- Note: $\psi_i(c_1,...,c_n)$ is of the form $s_1=t_1 \land \cdots \land s_l=t_l \land u_1 \neq v_1 \land \cdots \land u_m \neq v_m$
- ▶ Which is Unsat iff $s_1 = t_1 \land \cdots \land s_l = t_l \Rightarrow u_1 = v_1 \lor \cdots \lor u_m = v_m$ is Valid
- ▶ Iff for some *j*, $s_1=t_1 \land \cdots \land s_i=t_i \Rightarrow u_j=v_j$ is Valid
- So, we can reduce validity of FO formulas with no predicates to validity of equational logic with ground terms:
 - $\Phi \models s = t$ where s = t and all elements of Φ are ground equations
 - By Birkhoff's theorem, equivalent to Φ ⊢ φ where we only use Assm, Sub (no vars), equivalence and congruence rules

Reduction to Propositional Logic

- Ackermann's idea: reduce the problem to propositional logic
- Consider: $f(f(c)))=c \land f(f(c))=c \Rightarrow f(c) = c$ (Valid or not?)
- Remove functions: Introduce variables for subterms, say x_k=f^k(c) for 0≤k≤3 and add constraints for congruence properties over subterms

 $X_3 = X_0 \land X_2 = X_0 \land (X_0 = X_1 \Rightarrow X_1 = X_2) \land (X_0 = X_2 \Rightarrow X_1 = X_3) \land (X_1 = X_2 \Rightarrow X_2 = X_3)$

- Check if this implies x₁=x₀
- Remove =: replace equations, say s=t, with propositional atoms, say $P_{s,t}$, and add constraints for equivalence properties ($P_{s,t} \land P_{t,u} \Rightarrow P_{s,u}$)
- Now, we can use a propositional SAT solver

Ackermann Example

- ▷ Consider: $f(f(f(c)))=c \land f(f(c))=c \Rightarrow f(c)=c$
- Remove functions: Introduce variables for subterms, say

▶ $x_k = f^k(c)$ for $0 \le k \le 3$, so: $x_0 = c$, $x_1 = f(c)$, $x_2 = f(f(c))$, $x_3 = f(f(f(c)))$

- Rewrite problem: $x_3 = x_0 \land x_2 = x_0 \Rightarrow x_1 = x_0$
- Add hyps: constraints for congruence properties over subterms
 - $(X_0 = X_1 \Rightarrow X_1 = X_2) \land (X_0 = X_2 \Rightarrow X_1 = X_3) \land (X_1 = X_2 \Rightarrow X_2 = X_3)$
 - Note $(x_0=x_3 \Rightarrow x_1=x_4)$, etc not needed since x_4 is not a subterm
- Remove =: replace equations with propositional atoms
 - $P_{3,0} \land P_{2,0} \land (P_{0,1} \Rightarrow P_{1,2}) \land (P_{0,2} \Rightarrow P_{1,3}) \land (P_{1,2} \Rightarrow P_{2,3}) \Rightarrow P_{1,0}$
- Add equivalence properties (as hyps) Finish the reduction
 - $P_{0,0} \wedge P_{1,1} \wedge P_{2,2} \wedge P_{3,3} \wedge$ Optimizations?
 - $(P_{0,1} \equiv P_{1,0}) \land (P_{0,2} \equiv P_{2,0}) \land (P_{0,3} \equiv P_{3,0}) \land (P_{1,2} \equiv P_{2,1}) \land (P_{1,3} \equiv P_{3,1}) \land (P_{2,3} \equiv P_{3,2}) \land (P_{2,3} \equiv P_{3,2})$
 - $(P_{1,0} \land P_{0,2} \Rightarrow P_{1,2}) \land (P_{1,0} \land P_{0,3} \Rightarrow P_{1,3}) \land (P_{2,0} \land P_{0,3} \Rightarrow P_{2,3}) \land (P_{0,1} \land P_{1,2} \Rightarrow P_{0,2}) \land (P_{0,1} \land P_{1,3} \Rightarrow P_{0,3}) \land (P_{2,1} \land P_{1,3} \Rightarrow P_{2,3}) \land (P_{0,2} \land P_{2,1} \Rightarrow P_{0,1}) \land (P_{0,2} \land P_{2,3} \Rightarrow P_{0,3}) \land (P_{1,2} \land P_{2,3} \Rightarrow P_{1,3}) \land (P_{0,3} \land P_{3,1} \Rightarrow P_{0,1}) \land (P_{0,3} \land P_{3,2} \Rightarrow P_{0,2}) \land (P_{1,3} \land P_{3,2} \Rightarrow P_{1,2})$

Congruence Closure

- Decision procedure for $\Phi \models s = t$ where s = t and all elements of Φ are ground equations
- Let G be a set of terms closed under subterms
 - ▶ If $t \in G$ and s is a subterm of t, then $t \in G$
- ▷ ~ is a congruence on G: an equivalence, congruence on terms in G
- For R⊆G×G, the congruence closure of R on G is the smallest congruence on G extending R
 - Start with *R* and apply equivalence, congruence rules until fixpoint
- Let Φ={s₁=t₁, ..., s_n=t_n}, G is the minimal set closed under subterms of {s₁, t₁, ..., s_n, t_n, s, t}, ~ the congruence closure of Φ on G. Then:
 - $\Phi \models s = t \text{ iff } s \sim t$
 - Can do this in P-time

Congruence Closure Algorithm

- Decision procedure for $\Phi \models s = t$ where s = t and all elements of Φ are ground equations
- Main idea: use a graph with structure sharing to represent terms
- Start with ~ being the identity
- Each node (term) is mapped to its equivalence class
- For each assumption, $s_i = t_i$,
 - merge equivalence classes [s_i], [t_i]
 - propagate congruences efficiently (using predecessor pointers)
- Check is [s] = [t] after processing all hypotheses
- ▷ $O(m^2)$ algorithm due to Nelson, Oppen (*m* is the # edges in graph)

Congruence Closure Example

Consider: $f(f(f(c)))=c \land f(f(c))=c \Rightarrow f(c)=c$

Congruence Closure Algorithm

For each node n, we have: l(n): function/constant symbol of *n* d(n): # of successors of *n* (= arity l(n)) n[i]: the *i*th successor of *n* $p(n) = \{m \mid \exists i \ m[i] \sim n \}$ $c(n,m) = l(n) = l(m) \land \forall i \ n[i] \sim m[i]$

merge(n, m): if $n \not\sim m$ then P := p(n); Q = p(m) Union(n,m)for all $(p,q) \in P \times Q$ do if $p \not\sim q \land c(p,q)$ then merge(p,q)

Merge all $s_i = t_i$ Use Union-Find algorithm

~ is a congruence if it is an equivalence

if $l(n)=l(m) \land \forall i \ n[i] \sim m[i]$ then $n \sim m$