Lecture 21

Pete Manolios Northeastern

Presentation/Project Schedule

- $11 / 27$
- Ben B (40 min)
- Dustin (40 min)
- Alex (20 min)
- 11/30
- Ankit (40 min)
- Taylor (20 min)
- Nathaniel (20 min)
- Daniel (20 min)
- $12 / 4$
- Michael (20 min)
- Drew (40 min)
- \quad Ben $\mathrm{Q}(40 \mathrm{~min})$

Meet with me to review slides at least 3 days before your presentations

Exam 2:

Distribute 11/30 after class
Due 12/1 by 3PM (email)

Recall: Sequent Rules

Reflexivity Rule for Equality (\equiv)

$$
\overline{t \equiv t}
$$

Substitution Rule for Equality (Sub)

Γ	$\varphi \frac{t}{x}$
Γ	$t \equiv t^{\prime}$

* Can derive that equality is symmetric and transitive (so equivalence)
- Can derive that equality is a congruence
- Suppose Φ is a set of equations (universal formulas of the form $s=t$) and ϕ is an equation
*Then, $\Phi \vDash \phi$ iff $\Phi \vdash \phi$ where we only use Assm, Sub, equivalence and congruence rules (Birkhoff's theorem)
- More on this soon

Equality Decision Procedure

- Consider a universal formula $\left\langle\forall x_{1}, \ldots, x_{n} \phi\left(x_{1}, \ldots, x_{n}\right)\right\rangle$ which does not contain any predicates, but can contain $=$, vars, functions, constants
- The formula is valid iff $\left\langle\exists x_{1}, \ldots, x_{n} \neg \phi\left(x_{1}, \ldots, x_{n}\right)\right\rangle$ is Unsat
- Iff $\neg \phi\left(c_{1}, \ldots, c_{n}\right)$ is Unsat, via Skolemization
- We can generate equivalent DNF: $\psi_{1}\left(c_{1}, \ldots, c_{n}\right) \vee \cdots \vee \psi_{k}\left(c_{1}, \ldots, c_{n}\right)$
- Which is Unsat iff $\psi_{i}\left(c_{1}, \ldots, c_{n}\right)$ is Unsat for all i (there are no vars)
- Note: $\psi_{i}\left(c_{1}, \ldots, c_{n}\right)$ is of the form $s_{1}=t_{1} \wedge \cdots \wedge s_{l}=t_{l} \wedge u_{1} \neq v_{1} \wedge \cdots \wedge u_{m} \neq v_{m}$

B Which is Unsat iff $s_{1}=t_{1} \wedge \cdots \wedge s_{l}=t_{l} \Rightarrow u_{1}=v_{1} \vee \cdots \vee u_{m}=v_{m}$ is Valid

- Iff for some $j, s_{1}=t_{1} \wedge \cdots \wedge s_{l}=t_{l} \Rightarrow u_{j}=v_{j}$ is Valid
\& So, we can reduce validity of FO formulas with no predicates to validity of equational logic with ground terms:
- $\Phi \vDash s=t$ where $s=t$ and all elements of Φ are ground equations
- By Birkhoff's theorem, equivalent to $\Phi \vdash \varnothing$ where we only use Assm, Sub (no vars), equivalence and congruence rules

Reduction to Propositional Logic

* Ackermann's idea: reduce the problem to propositional logic
- Consider: $f(f(f(c)))=c \wedge f(f(c))=c \Rightarrow f(c)=c$ (Valid or not?)
* Remove functions: Introduce variables for subterms, say $x_{k}=f(c)$ for $0 \leq k \leq 3$ and add constraints for congruence properties over subterms * $x_{3}=x_{0} \wedge x_{2}=x_{0} \wedge\left(x_{0}=x_{1} \Rightarrow x_{1}=x_{2}\right) \wedge\left(x_{0}=x_{2} \Rightarrow x_{1}=x_{3}\right) \wedge\left(x_{1}=x_{2} \Rightarrow x_{2}=x_{3}\right)$
- Check if this implies $x_{1}=x_{0}$
* Remove $=$: replace equations, say $s=t$, with propositional atoms, say $P_{s, t}$, and add constraints for equivalence properties $\left(P_{\mathrm{s}, t} \wedge P_{t, u} \Rightarrow P_{\mathrm{s}, u}\right)$
- Now, we can use a propositional SAT solver

Ackermann Example

- Consider: $f(f(f(c)))=c \wedge f(f(c))=c \Rightarrow f(c)=c$
- Remove functions: Introduce variables for subterms, say
- $x_{k}=f k(c)$ for $0 \leq k \leq 3$, so: $x_{0}=c, x_{1}=f(c), x_{2}=f(f(c)), x_{3}=f(f(f(c)))$
- Rewrite problem: $x_{3}=x_{0} \wedge x_{2}=x_{0} \Rightarrow x_{1}=x_{0}$
- Add hyps: constraints for congruence properties over subterms
- $\left(x_{0}=x_{1} \Rightarrow x_{1}=x_{2}\right) \wedge\left(x_{0}=x_{2} \Rightarrow x_{1}=x_{3}\right) \wedge\left(x_{1}=x_{2} \Rightarrow x_{2}=x_{3}\right)$

B Note ($x_{0}=x_{3} \Rightarrow x_{1}=x_{4}$), etc not needed since x_{4} is not a subterm

* Remove $=$: replace equations with propositional atoms
- $P_{3,0} \wedge P_{2,0} \wedge\left(P_{0,1} \Rightarrow P_{1,2}\right) \wedge\left(P_{0,2} \Rightarrow P_{1,3}\right) \wedge\left(P_{1,2} \Rightarrow P_{2,3}\right) \Rightarrow P_{1,0}$
* Add equivalence properties (as hyps) Finish the reduction
- $P_{0,0} \wedge P_{1,1} \wedge P_{2,2} \wedge P_{3,3} \wedge$

Optimizations?
B $\left(P_{0,1} \equiv P_{1,0}\right) \wedge\left(P_{0,2} \equiv P_{2,0}\right) \wedge\left(P_{0,3} \equiv P_{3,0}\right) \wedge\left(P_{1,2} \equiv P_{2,1}\right) \wedge\left(P_{1,3} \equiv P_{3,1}\right) \wedge\left(P_{2,3} \equiv P_{3,2}\right) \wedge$
b $\left(P_{1,0} \wedge P_{0,2} \Rightarrow P_{1,2}\right) \wedge\left(P_{1,0} \wedge P_{0,3} \Rightarrow P_{1,3}\right) \wedge\left(P_{2,0 \wedge} P_{0,3} \Rightarrow P_{2,3}\right) \wedge\left(P_{0,1} \wedge P_{1,2} \Rightarrow P_{0,2}\right) \wedge$ $\left(P_{0,1} \wedge P_{1,3} \Rightarrow P_{0,3}\right) \wedge\left(P_{2,1} \wedge P_{1,3} \Rightarrow P_{2,3}\right) \wedge\left(P_{0,2} \wedge P_{2,1} \Rightarrow P_{0,1}\right) \wedge\left(P_{0,2} \wedge P_{2,3} \Rightarrow P_{0,3}\right) \wedge$ $\left(P_{1,2} \wedge P_{2,3} \Rightarrow P_{1,3}\right) \wedge\left(P_{0,3} \wedge P_{3,1} \Rightarrow P_{0,1}\right) \wedge\left(P_{0,3} \wedge P_{3,2} \Rightarrow P_{0,2}\right) \wedge\left(P_{1,3} \wedge P_{3,2} \Rightarrow P_{1,2}\right)$

Congruence Closure

- Decision procedure for $\Phi \vDash s=t$ where $s=t$ and all elements of Φ are ground equations
* Let G be a set of terms closed under subterms
- If $t \in G$ and s is a subterm of t, then $t \in G$
* ~ is a congruence on G : an equivalence, congruence on terms in G
- For $R \subseteq G \times G$, the congruence closure of R on G is the smallest congruence on G extending R
b Start with R and apply equivalence, congruence rules until fixpoint
- Let $\Phi=\left\{s_{1}=t_{1}, \ldots, s_{n}=t_{n}\right\}, G$ is the minimal set closed under subterms of $\left\{s_{1}, t_{1}, \ldots, s_{n}, t_{n}, s, t\right\}, \sim$ the congruence closure of Φ on G. Then:
- $\Phi \vDash s=t$ iff $s \sim t$
- Can do this in P-time

Congruence Closure Algorithm

* Decision procedure for $\Phi \vDash s=t$ where $s=t$ and all elements of Φ are ground equations
- Main idea: use a graph with structure sharing to represent terms
- Start with ~ being the identity
* Each node (term) is mapped to its equivalence class
- For each assumption, $s_{i}=t_{i}$,
b merge equivalence classes [$s i]$, $\left[t_{i}\right]$
* propagate congruences efficiently (using predecessor pointers)
* Check is $[s]=[t]$ after processing all hypotheses
* $\mathrm{O}\left(m^{2}\right)$ algorithm due to Nelson, Oppen (m is the \# edges in graph)

Congruence Closure Example

Consider: $f(f(f(c)))=c \wedge f(f(c))=c \Rightarrow f(c)=c$

$[f(f(c))]=[c]$, so $[f(f(f(c)))]=[f(c)]$ ie, $[c]=[f(c)]$
congruence propagation

So, when we extend the congruence, by unioning [s] [t], we also have to union any terms of the form $\mathrm{f}(. . . \mathrm{s} . .$.$) and \mathrm{f}(. . . \mathrm{t} . .$.$) if the$ rest of the arguments are in same class

Congruence Closure Algorithm

For each node n, we have:
$I(n)$: function/constant symbol of n $d(n)$: \# of successors of $n(=$ arity $/(n))$ $n[1]$: the $i^{\text {th }}$ successor of n

$$
p(n)=\{m \mid \exists i m[1] \sim n\}
$$

$$
c(n, m)=\|(n)=/(m) \wedge \forall i n[1] \sim m[i]
$$

merge (n, m) :
if $n \times m$ then
$P:=p(n) ; Q=p(m)$
Union(n, m)
for all $(p, q) \in P \times Q$ do
if $p \nsim q \wedge c(p, q)$ then $\operatorname{merge}(p, q)$
~ is a congruence if it is an equivalence if $/(n)=/(m) \wedge \forall i n[1] \sim m[i]$ then $n \sim m$

Merge all $s_{i}=t_{i}$
Use Union-Find algorithm

