
Lecture 21

Pete Manolios

Northeastern

Computer-Aided Reasoning, Lecture 21

Slides by Pete Manolios for CS4820

Presentation/Project Schedule
11/27

Ben B (40 min)

Dustin (40 min)

Alex (20 min)

11/30

Ankit (40 min)

Taylor (20 min)

Nathaniel (20 min)

Daniel (20 min)

12/4

Michael (20 min)

Drew (40 min)

Ben Q (40 min)

Meet with me to review slides

at least 3 days before your

presentations

Exam 2:

Distribute 11/30 after class

Due 12/1 by 3PM (email)

Recall: Sequent Rules

Can derive that equality is symmetric and transitive (so equivalence)

Can derive that equality is a congruence

Suppose Φ is a set of equations (universal formulas of the form s = t)
and φ is an equation

Then, Φ ⊨ φ iff Φ ⊢ φ where we only use Assm, Sub, equivalence
and congruence rules (Birkhoff’s theorem)

More on this soon

Equality Decision Procedure
Consider a universal formula ⟨∀x1,…,xn φ(x1,…,xn)⟩ which does not
contain any predicates, but can contain =, vars, functions, constants

The formula is valid iff ⟨∃x1,…,xn ¬φ(x1,…,xn)⟩ is Unsat

Iff ¬φ(c1,…,cn) is Unsat, via Skolemization

We can generate equivalent DNF: ψ1(c1,…,cn) ∨ ⋯ ∨ ψk(c1,…,cn)

Which is Unsat iff ψi(c1,…,cn) is Unsat for all i (there are no vars)

Note: ψi(c1,…,cn) is of the form s1=t1 ∧ ⋯ ∧ sl=tl ∧ u1≠v1 ∧ ⋯ ∧ um≠vm

Which is Unsat iff s1=t1 ∧ ⋯ ∧ sl=tl ⇒ u1=v1 ∨ ⋯ ∨ um=vm is Valid

Iff for some j, s1=t1 ∧ ⋯ ∧ sl=tl ⇒ uj=vj is Valid

So, we can reduce validity of FO formulas with no predicates to
validity of equational logic with ground terms:

Φ ⊨ s=t where s=t and all elements of Φ are ground equations

By Birkhoff’s theorem, equivalent to Φ ⊢ φ where we only use
Assm, Sub (no vars), equivalence and congruence rules

Reduction to Propositional Logic

Ackermann’s idea: reduce the problem to propositional logic

Consider: f(f(f(c)))=c ∧ f(f(c))=c ⇒ f(c) = c (Valid or not?)

Remove functions: Introduce variables for subterms, say xk=fk(c) for
0≤k≤3 and add constraints for congruence properties over subterms

x3=x0 ∧ x2=x0 ∧ (x0=x1 ⇒ x1=x2) ∧ (x0=x2 ⇒ x1=x3) ∧ (x1=x2 ⇒ x2=x3)

Check if this implies x1=x0

Remove =: replace equations, say s=t, with propositional atoms, say
Ps,t, and add constraints for equivalence properties (Ps,t ∧ Pt,u ⇒ Ps,u)

Now, we can use a propositional SAT solver

Ackermann Example
Consider: f(f(f(c)))=c ∧ f(f(c))=c ⇒ f(c) = c
Remove functions: Introduce variables for subterms, say

xk=fk(c) for 0≤k≤3, so: x0=c, x1=f(c), x2=f(f(c)), x3=f(f(f(c)))
Rewrite problem: x3=x0 ∧ x2=x0 ⇒ x1=x0
Add hyps: constraints for congruence properties over subterms

(x0=x1 ⇒ x1=x2) ∧ (x0=x2 ⇒ x1=x3) ∧ (x1=x2 ⇒ x2=x3)

Note (x0=x3 ⇒ x1=x4), etc not needed since x4 is not a subterm

Remove =: replace equations with propositional atoms

P3,0 ∧ P2,0 ∧ (P0,1 ⇒ P1,2) ∧ (P0,2 ⇒ P1,3) ∧ (P1,2 ⇒ P2,3) ⇒ P1,0

Add equivalence properties (as hyps) Finish the reduction

P0,0 ∧ P1,1 ∧ P2,2 ∧ P3,3 ∧

(P0,1≡P1,0)∧(P0,2≡P2,0)∧(P0,3≡P3,0)∧(P1,2≡P2,1)∧(P1,3≡P3,1)∧(P2,3≡P3,2)∧

(P1,0∧P0,2⇒P1,2)∧(P1,0∧P0,3⇒P1,3)∧(P2,0∧P0,3⇒P2,3)∧(P0,1∧P1,2⇒P0,2)∧
(P0,1∧P1,3⇒P0,3)∧(P2,1∧P1,3⇒P2,3)∧(P0,2∧P2,1⇒P0,1)∧(P0,2∧P2,3⇒P0,3)∧
(P1,2∧P2,3⇒P1,3)∧(P0,3∧P3,1⇒P0,1)∧(P0,3∧P3,2⇒P0,2)∧(P1,3∧P3,2⇒P1,2)

Optimizations?

Congruence Closure

Decision procedure for Φ ⊨ s=t where s=t and all elements of Φ are
ground equations

Let G be a set of terms closed under subterms

If t∈G and s is a subterm of t, then t∈G
~ is a congruence on G: an equivalence, congruence on terms in G
For R⊆G×G, the congruence closure of R on G is the smallest
congruence on G extending R

Start with R and apply equivalence, congruence rules until fixpoint

Let Φ={s1=t1, …, sn=tn}, G is the minimal set closed under subterms of
{s1, t1, …, sn, tn, s, t}, ~ the congruence closure of Φ on G. Then:

Φ ⊨ s=t iff s~t
Can do this in P-time

Congruence Closure Algorithm

Decision procedure for Φ ⊨ s=t where s=t and all elements of Φ are
ground equations

Main idea: use a graph with structure sharing to represent terms

Start with ~ being the identity

Each node (term) is mapped to its equivalence class

For each assumption, si=ti,

merge equivalence classes [si], [ti]

propagate congruences efficiently (using predecessor pointers)

Check is [s] = [t] after processing all hypotheses

O(m2) algorithm due to Nelson, Oppen (m is the # edges in graph)

Congruence Closure Example
Consider: f(f(f(c)))=c ∧ f(f(c))=c ⇒ f(c) = c

f

f

f

c

f(f(f(c)))=c
f(f(c))=c

f(c)=c

equivalence class of term

Graph representation
allows structure sharing

[f(f(c))]=[c], so [f(f(f(c)))]=[f(c)] ie,
[c]=[f(c)]

congruence propagation

f

c

corresponds to f(c)

corresponds to c

So, when we extend the congruence, by
unioning [s] [t], we also have to union any
terms of the form f(…s…) and f(…t…) if the

rest of the arguments are in same class

Congruence Closure Algorithm
For each node n, we have:

 l(n): function/constant symbol of n
 d(n): # of successors of n (= arity l(n))

 n[i]: the ith successor of n

~ is a congruence if

 it is an equivalence

 if l(n)=l(m) ∧ ∀i n[i]~m[i] then n~m

p(n) = {m | ∃i m[i]~n }

c(n,m) = l(n)=l(m) ∧ ∀i n[i]~m[i]

merge(n, m):

 if n≁m then

 P := p(n); Q=p(m)

 Union(n,m)

 for all (p,q) ∈ P×Q do

 if p≁q ∧ c(p,q) then merge(p,q)

Merge all si=ti

Use Union-Find algorithm

