Lecture 20

Pete Manolios Northeastern

Computer-Aided Reasoning, Lecture 20

(defdata lon (listof nat)) (defdata nlon (cons nat lon)) (defunc f (l) :input-contract (nlonp l) :output-contract (natp (f l)) No one came up with a measure (cond ((endp (cdr l)) (car l)) that works! ((equal (car l) 0) (f (cdr l))) ((equal (car l) (+ 1 (second l))) (f (cdr l))) (t (f (cons (car l) (cons (- (car l) 1) (cdr l)))))) (defunc m (l) Almost all proposed measures :input-contract (nlonp 1) had simple counterexamples, so :output-contract (natp (m l)) test your measure functions! (cond ((endp (cdr 1)) 0) ((equal (car l) 0) (+ 1 (m (cdr l)))) A useful pattern: use the same ((equal (car l) (+ 1 (second l))) cond structure as the function (+ 1 (m (cdr l))) you want to admit (t (+ 1 (* 2 (car l)) (m (cdr l)))))

```
(A (A (R (A x y)) z) w)
= \{ R1 \}
(A (A (A (R y) (R x)) z) w)
= \{ R2 \}
(A (A (A (R x) (R y)) z) w)
= \{ R3 \}
(A (A (R x) (A (R y) z)) w)
= \{ R2 \}
(A (A (R x) (A z (R y))) w)
= \{ R3 \}
(A (R x) (A (A z (R y)) w))
= \{ R3 \}
(A (R x) (A z (A (R y) w)))
= \{ R2 \}
(A (R x) (A z (A w (R y))))
```

R1. $(R (A \times y)) = (A (R y) (R x))$ R2. $(A y x) = (A \times y)$ R3. $(A (A \times y) z) = (A \times (A y z))$

Rewriting is the most important part of ACL2, so remember:

- 1. Left to right (everyone got that)
- 2. Inside-out
- 3. Reverse chronological

Plus special handling of permutative rules, type reasoning, linear arithmetic, tau, conditional rewriting, forward chaining, ... (most of which I didn't test)

BDD question: Almost everyone got this one right!

DP question: Four of you struggled, but mostly easy. Hopefully easy now after implementing DP.

Proof question: Only 1 person got a perfect score. All but two people got more than 1/2 credit.

Surprisingly, most of you came up with the wrong lemma! Simple counterexamples exist, so write tests for lemmas.

The lemma generation project by Ben is relevant

Gödel's Completeness Theorem

 $\blacktriangleright \Phi \vdash \varphi \text{ iff } \Phi \vDash \varphi$

- What does this mean for group theory?
- What about new proof techniques?
- ▶ Once we show the equivalence between $\vdash \phi$ and \models , we can transfer properties of one to the other
 - Compactness theorem:
 (a) Φ ⊨ φ iff there is a finite Φ₀ ⊆ Φ such that Φ₀ ⊨ φ
 (b) Sat Φ iff for all finite Φ₀ ⊆ Φ, Sat Φ₀
- From the proof, we get the Löwenheim-Skolem theorem: Every satisfiable and at most countable set of formulas is satisfiable over a domain which is at most countable

Consequences of Completeness

Theorem Every satisfiable set of formulas $\Phi \subseteq L^S$ is satisfiable over a domain of cardinality $\leq |L^S|$.

Theorem If $\Phi \subseteq L_0^S$ has arbitrarily large finite models (for every $i \in \omega$, Φ has a model whose domain has more than i elements), then it has an infinite model.

Proof Let

. . .

$$\psi_{2} = \exists x \exists y \ x \neq y$$
$$\psi_{3} = \exists x \exists y \exists z \ (x \neq y) \land (x \neq z) \land (y \neq z)$$

Consider $\Phi \cup \{\psi_i : i > 2\}$. Note that every finite subset has a model. By compactness, the set has a model. \Box

Theories

T is a theory iff $T \subseteq L_0^S$ and for all $\varphi \in L_0^S$, $T \models \varphi \Rightarrow \varphi \in T$.

 $\Phi^{\models} = \{\varphi : \Phi \models \varphi\}.$

T is a theory iff $T = T \models$

T is complete iff $\langle \forall \varphi :: \varphi \in T \lor \neg \varphi \in T \rangle$.

For a set of structures **K**, Th $\mathbf{K} = \{\varphi \in L_0^S : \forall \mathbf{U} \in \mathbf{K}, \mathbf{U} \models \varphi\}$

Axiomatizable Theories

Definition Theory T is axiomatizable iff there exists a decidable set Φ of sentences s.t. $T = \Phi^{\models}$.

Definition Theory T is finitely axiomatizable iff $T = \Phi^{\models}$, where Φ is a set of sentences s.t. $|\Phi| < \omega$.

Note that if Theory T is finitely axiomatizable $T = \{\varphi\}^{\models}$ (where φ is a conjunction of finitely many sentences).

Lemma (a) If T is finitely axiomatizable, it is axiomatizable. (b) If T is axiomatizable, it is r.e. (c) If T is axiomatizable and complete, it is recursive.

Non-Standard Models

- Let $N_s = \langle \omega, s, 0 \rangle$, where *s* is the successor function. N_s satisfies:
 - ▶ (the successor of any number differs from that number) $\langle \forall x \ x \neq s(x) \rangle$
 - ▷ (s is injective) $\langle \forall x, y \ x \neq y \Rightarrow s(x) \neq s(y) \rangle$
 - ▷ (every non-0 number has a predecessor) $\langle \forall x \ x \neq 0 \Rightarrow \langle \exists y \ y = s(x) \rangle \rangle$
- [▶] Let Ψ = Th N_s ∪ { $x \neq 0, x \neq s(0), ..., x \neq s^n(0), ...$ }
- Every finite subset of Ψ has a model, so Ψ has a model (compactness)
- [▶] By Lowenheim-Skolem, let \mathfrak{U} be a countable model of Ψ
 - ▶ \mathfrak{U} includes 0, s(0), ..., $s^n(0)$, ..., and a, a non-standard number
 - ▶ *a* has a successor, predecessor, and they have successors, predecessors
 - ▶ so *a* is part of a Z-chain
 - [▶] hence, there is a countable model, \mathfrak{U} , which is *not* isomorphic to N_s
- While there is a complete axiomatization for Th N_s, once the logic is powerful enough (add +, *, <), completeness goes out the window</p>

0, *s*(0), …, *s*ⁿ(0), …, …, *p*ⁿ(*a*), …, *p*(*a*), *a*, *s*(*a*), …, *s*ⁿ(*a*), … ℤ-chain *p*(*a*) is the predecessor of *a* (isomophic to ℤ)

Gödel's 1st Incompleteness Theorem

- ▶ A set is *recursive* iff ∈ can be decided by a Turing machine
- ▶ Assuming Con(ZF), the set { ϕ : ZF $\vdash \phi$ } is not recursive
- More generally, for any consistent extension C of ZF:
 - ▶ $\{\phi : C \vdash \phi\}$ is not recursive
 - Intuitively clear: embed Turing machines in set theory
 - Encode halting problem! as a formula in set theory
- ▶ Theorem: If C is a recursive consistent extension of ZF, then it is incomplete, i.e., there is a formula ϕ such that C $\vdash \phi$ and C $\vdash \neg \phi$
- Proof Outline: If not, then for every φ, either C ⊢ φ or C ⊢ ¬φ. We can now decide C ⊢ φ: enumerate all proofs of C. Stop when a proof for φ or ¬φ is found

FOL Observations

- In ZF, the axiom of choice is neither provable nor refutable
- In ZFC, the continuum hypothesis is neither provable nor refutable
- By Gödel's first incompleteness theorem, no matter how we extend ZFC, there will always be sentences which are neither provable nor refutable
- There are non-standard models of \mathbb{N} , \mathbb{R} (un/countable)
- Since any reasonable proof theory has to be decidable, and TMs can be formalized in FOL (set theory), any logic can be reduced to FOL
- Building reliable computing systems requires having programs that can reason about other programs and this means we have to really understand what a proof is so that we can program a computer to do it

Presentation/Project Schedule

- ▶ 11/27
 - Ben B (40 min)
 - Dustin (40 min)
 - Alex (20 min)
- ▶ 11/30
 - Ankit (40 min)
 - Taylor (20 min)
 - Nathaniel (20 min)
 - Daniel (20 min)
- ▶ 12/4
 - Michael (20 min)
 - Drew (40 min)
 - Ben Q (40 min)

Meet with me to review slides at least 3 days before your presentations

Exam 2: Distribute 11/30 after class Due 12/1 by 3PM (email)

Slides by Pete Manolios for CS4820