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Question 2
(defdata lon (listof nat))              (defdata nlon (cons nat lon))
(defunc f (l)
  :input-contract (nlonp l)
  :output-contract (natp (f l))
   (cond ((endp (cdr l)) (car l))
         ((equal (car l) 0) (f (cdr l)))
         ((equal (car l) (+ 1 (second l)))
          (f (cdr l)))
         (t (f (cons (car l) (cons (- (car l) 1) (cdr l)))))))

(defunc m (l)
  :input-contract (nlonp l)
  :output-contract (natp (m l))
  (cond ((endp (cdr l)) 0)
        ((equal (car l) 0) (+ 1 (m (cdr l))))
        ((equal (car l) (+ 1 (second l)))
         (+ 1 (m (cdr l))))
        (t (+ 1 (* 2 (car l)) (m (cdr l))))))

Almost all proposed measures 
had simple counterexamples, so 

test your measure functions! 

A useful pattern: use the same 
cond structure as the function 

you want to admit

No one came up with a measure 
that works!
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Question 3
R1. (R (A x y)) = (A (R y) (R x))
R2. (A y x) = (A x y)
R3. (A (A x y) z) = (A x (A y z))

Rewriting is the most important part 
of ACL2, so remember: 

1. Left to right (everyone got that) 
2. Inside-out  
3. Reverse chronological 

Plus special handling of 
permutative rules, type reasoning, 
linear arithmetic, tau, conditional 

rewriting, forward chaining, … 
(most of which I didn’t test)

(A (A (R (A x y)) z) w)
= { R1 }
(A (A (A (R y) (R x)) z) w)
= { R2 }
(A (A (A (R x) (R y)) z) w)
= { R3 }
(A (A (R x) (A (R y) z)) w)
= { R2 }
(A (A (R x) (A z (R y))) w)
= { R3 }
(A (R x) (A (A z (R y)) w))
= { R3 }
(A (R x) (A z (A (R y) w)))
= { R2 }
(A (R x) (A z (A w (R y))))
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Question 4

BDD question: Almost everyone got this one  right!
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Question 5

DP question: Four of you struggled, but mostly easy. 
Hopefully easy now after implementing DP.
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Question 6

Proof question: Only 1 person got a perfect score. 
All but two people got more than 1/2 credit. 

Surprisingly, most of you came up with the wrong lemma! 
Simple counterexamples exist, so write tests for lemmas. 

The lemma generation project by Ben is relevant



Gödel’s Completeness Theorem

Φ ⊢ φ  iff  Φ ⊨ φ


What does this mean for group theory?

What about new proof techniques?

Once we show the equivalence between ⊢ φ  and  ⊨, we can 
transfer properties of one to the other


Compactness theorem:                                                              
(a) Φ ⊨ φ iff there is a finite Φ0 ⊆ Φ such that Φ0 ⊨ φ                 
(b) Sat Φ iff for all finite Φ0 ⊆ Φ, Sat Φ0 


From the proof, we get the Löwenheim-Skolem theorem: Every 
satisfiable and at most countable set of formulas is satisfiable over 
a domain which is at most countable



Consequences of Completeness



Theories



Axiomatizable Theories



Non-Standard Models
Let Ns = ⟨ω, s, 0⟩, where s is the successor function.  Ns satisfies:

(the successor of any number differs from that number) ⟨∀x  x≠s(x)⟩
(s is injective) ⟨∀x,y  x≠y  ⇒ s(x)≠s(y)⟩
(every non-0 number has a predecessor) ⟨∀x  x≠0  ⇒  ⟨∃y y=s(x)⟩⟩

Let Ψ = Th Ns ∪ {x≠0, x≠s(0), …, x≠sn(0), …}
Every finite subset of Ψ has a model, so Ψ has a model (compactness)
By Lowenheim-Skolem, let 𝖀 be a countable model of Ψ
𝖀 includes 0, s(0), …, sn(0), …, and a, a non-standard number
a has a successor, predecessor, and they have successors, predecessors
so a is part of a ℤ-chain 
hence, there is a countable model, 𝖀, which is not isomorphic to Ns

While there is a complete axiomatization for Th Ns, once the logic is powerful 
enough (add +, *, <), completeness goes out the window 

0, s(0), …, sn(0), …, a, s(a), …, sn(a), ……, pn(a), …,p(a),
p(a) is the predecessor of a

ℤ-chain
(isomophic to ℤ)



Gödel’s 1st Incompleteness Theorem

A set is recursive iff ∈ can be decided by a Turing machine


Assuming Con(ZF), the set {φ : ZF ⊢ φ} is not recursive


More generally, for any consistent extension C of ZF:

{φ : C ⊢ φ} is not recursive


Intuitively clear: embed Turing machines in set theory

Encode halting problem! as a formula in set theory


Theorem: If C is a recursive consistent extension of ZF, then it is 
incomplete, i.e., there is a formula φ such that C ⊬ φ and C ⊬ ¬φ


Proof Outline: If not, then for every φ, either C ⊢ φ or C ⊢ ¬φ. We 
can now decide C ⊢ φ: enumerate all proofs of C. Stop when a 
proof for φ or ¬φ is found



FOL Observations

In ZF, the axiom of choice is neither provable nor refutable

In ZFC, the continuum hypothesis is neither provable nor refutable 

By Gödel’s first incompleteness theorem, no matter how we extend 
ZFC, there will always be sentences which are neither provable nor 
refutable


There are non-standard models of ℕ, ℝ (un/countable)

Since any reasonable proof theory has to be decidable, and TMs can 
be formalized in FOL (set theory), any logic can be reduced to FOL 

Building reliable computing systems requires having programs that 
can reason about other programs and this means we have to really 
understand what a proof is so that we can program a computer to 
do it 
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Presentation/Project Schedule
11/27


Ben B (40 min)


Dustin (40 min)


Alex (20 min)


11/30


Ankit (40 min) 


Taylor (20 min)


Nathaniel (20 min)


Daniel (20 min)


12/4


Michael (20 min) 


Drew (40 min)


Ben Q (40 min)

Meet with me to review slides 

at least 3 days before your 

presentations

Exam 2: 

Distribute 11/30 after class 

Due 12/1 by 3PM (email)


