
Lecture 20

Pete Manolios

Northeastern

Computer-Aided Reasoning, Lecture 20

Slides by Pete Manolios for CS4820

Question 2
(defdata lon (listof nat)) (defdata nlon (cons nat lon))
(defunc f (l)
 :input-contract (nlonp l)
 :output-contract (natp (f l))
 (cond ((endp (cdr l)) (car l))
 ((equal (car l) 0) (f (cdr l)))
 ((equal (car l) (+ 1 (second l)))
 (f (cdr l)))
 (t (f (cons (car l) (cons (- (car l) 1) (cdr l)))))))

(defunc m (l)
 :input-contract (nlonp l)
 :output-contract (natp (m l))
 (cond ((endp (cdr l)) 0)
 ((equal (car l) 0) (+ 1 (m (cdr l))))
 ((equal (car l) (+ 1 (second l)))
 (+ 1 (m (cdr l))))
 (t (+ 1 (* 2 (car l)) (m (cdr l))))))

Almost all proposed measures
had simple counterexamples, so

test your measure functions!

A useful pattern: use the same
cond structure as the function

you want to admit

No one came up with a measure
that works!

Slides by Pete Manolios for CS4820

Question 3
R1. (R (A x y)) = (A (R y) (R x))
R2. (A y x) = (A x y)
R3. (A (A x y) z) = (A x (A y z))

Rewriting is the most important part
of ACL2, so remember:

1. Left to right (everyone got that)
2. Inside-out
3. Reverse chronological

Plus special handling of
permutative rules, type reasoning,
linear arithmetic, tau, conditional

rewriting, forward chaining, …
(most of which I didn’t test)

(A (A (R (A x y)) z) w)
= { R1 }
(A (A (A (R y) (R x)) z) w)
= { R2 }
(A (A (A (R x) (R y)) z) w)
= { R3 }
(A (A (R x) (A (R y) z)) w)
= { R2 }
(A (A (R x) (A z (R y))) w)
= { R3 }
(A (R x) (A (A z (R y)) w))
= { R3 }
(A (R x) (A z (A (R y) w)))
= { R2 }
(A (R x) (A z (A w (R y))))

Slides by Pete Manolios for CS4820

Question 4

BDD question: Almost everyone got this one right!

Slides by Pete Manolios for CS4820

Question 5

DP question: Four of you struggled, but mostly easy.
Hopefully easy now after implementing DP.

Slides by Pete Manolios for CS4820

Question 6

Proof question: Only 1 person got a perfect score.
All but two people got more than 1/2 credit.

Surprisingly, most of you came up with the wrong lemma!
Simple counterexamples exist, so write tests for lemmas.

The lemma generation project by Ben is relevant

Gödel’s Completeness Theorem

Φ ⊢ φ iff Φ ⊨ φ

What does this mean for group theory?

What about new proof techniques?

Once we show the equivalence between ⊢ φ and ⊨, we can
transfer properties of one to the other

Compactness theorem:
(a) Φ ⊨ φ iff there is a finite Φ0 ⊆ Φ such that Φ0 ⊨ φ
(b) Sat Φ iff for all finite Φ0 ⊆ Φ, Sat Φ0

From the proof, we get the Löwenheim-Skolem theorem: Every
satisfiable and at most countable set of formulas is satisfiable over
a domain which is at most countable

Consequences of Completeness

Theories

Axiomatizable Theories

Non-Standard Models
Let Ns = ⟨ω, s, 0⟩, where s is the successor function. Ns satisfies:

(the successor of any number differs from that number) ⟨∀x x≠s(x)⟩
(s is injective) ⟨∀x,y x≠y ⇒ s(x)≠s(y)⟩
(every non-0 number has a predecessor) ⟨∀x x≠0 ⇒ ⟨∃y y=s(x)⟩⟩

Let Ψ = Th Ns ∪ {x≠0, x≠s(0), …, x≠sn(0), …}
Every finite subset of Ψ has a model, so Ψ has a model (compactness)
By Lowenheim-Skolem, let 𝖀 be a countable model of Ψ
𝖀 includes 0, s(0), …, sn(0), …, and a, a non-standard number
a has a successor, predecessor, and they have successors, predecessors
so a is part of a ℤ-chain
hence, there is a countable model, 𝖀, which is not isomorphic to Ns

While there is a complete axiomatization for Th Ns, once the logic is powerful
enough (add +, *, <), completeness goes out the window

0, s(0), …, sn(0), …, a, s(a), …, sn(a), ……, pn(a), …,p(a),
p(a) is the predecessor of a

ℤ-chain
(isomophic to ℤ)

Gödel’s 1st Incompleteness Theorem

A set is recursive iff ∈ can be decided by a Turing machine

Assuming Con(ZF), the set {φ : ZF ⊢ φ} is not recursive

More generally, for any consistent extension C of ZF:

{φ : C ⊢ φ} is not recursive

Intuitively clear: embed Turing machines in set theory

Encode halting problem! as a formula in set theory

Theorem: If C is a recursive consistent extension of ZF, then it is
incomplete, i.e., there is a formula φ such that C ⊬ φ and C ⊬ ¬φ

Proof Outline: If not, then for every φ, either C ⊢ φ or C ⊢ ¬φ. We
can now decide C ⊢ φ: enumerate all proofs of C. Stop when a
proof for φ or ¬φ is found

FOL Observations

In ZF, the axiom of choice is neither provable nor refutable

In ZFC, the continuum hypothesis is neither provable nor refutable

By Gödel’s first incompleteness theorem, no matter how we extend
ZFC, there will always be sentences which are neither provable nor
refutable

There are non-standard models of ℕ, ℝ (un/countable)

Since any reasonable proof theory has to be decidable, and TMs can
be formalized in FOL (set theory), any logic can be reduced to FOL

Building reliable computing systems requires having programs that
can reason about other programs and this means we have to really
understand what a proof is so that we can program a computer to
do it

Slides by Pete Manolios for CS4820

Presentation/Project Schedule
11/27

Ben B (40 min)

Dustin (40 min)

Alex (20 min)

11/30

Ankit (40 min)

Taylor (20 min)

Nathaniel (20 min)

Daniel (20 min)

12/4

Michael (20 min)

Drew (40 min)

Ben Q (40 min)

Meet with me to review slides

at least 3 days before your

presentations

Exam 2:

Distribute 11/30 after class

Due 12/1 by 3PM (email)

