Lecture 20

Pete Manolios Northeastern

Questin?

```
(defdata lon (listof nat))
(defdata nlon (cons nat lon))
(defunc f (l)
    :input-contract (nlonp l)
    :output-contract (natp (f l))
    (cond ((endp (cdr l)) (car l))
    ((equal (car l) 0) (f (cdr l)))
        ((equal (car l) (+ 1 (second l)))
        (f (cdr l)))
        (t (f (cons (car l) (cons (- (car l) 1) (cdr l)))))))
(defunc m (l)
    :input-contract (nlonp l)
    :output-contract (natp (m l))
    (cond ((endp (cdr l)) 0)
    ((equal (car l) 0) (+ 1 (m (cdr l))))
    ((equal (car l) (+ 1 (second l)))
    (+ 1 (m (cdr l))))
    (t (+ 1 (* 2 (car l)) (m (cdr l))))))
```

Almost all proposed measures had simple counterexamples, so test your measure functions!

A useful pattern: use the same cond structure as the function you want to admit

Question 3

```
(A (A (R (A x y)) z) w)
\(=\{R 1\}\)
(A (A (A (Ry) \((R x)) z) w)\)
\(=\{R 2\}\)
(A (A (A (R x) (R y)) z) w)
\(=\{\) R3 \(\}\)
(A (A (R x) (A (Ry) z)) w)
\(=\{R 2\}\)
(A (A (R x) (A z (R y))) w)
\(=\{R 3\}\)
(A (R x) (A (A z (R y)) w))
\(=\{R 3\}\)
(A (R x) (A z (A (Ry)w))
\(=\{R 2\}\)
(A (R x) (A z (A w \((R y))))\)
```

R1. $(R(A x y))=(A(R y)(R x))$
R2. (A y x) $=(A x y)$
R3. (A $(A x y) z)=(A x(A y z))$
Rewriting is the most important part of ACL2, so remember:

1. Left to right (everyone got that)
2. Inside-out
3. Reverse chronological

Plus special handling of permutative rules, type reasoning, linear arithmetic, tau, conditional rewriting, forward chaining, ... (most of which I didn't test)

Question 4

BDD question: Almost everyone got this one right!

Question 5

DP question: Four of you struggled, but mostly easy. Hopefully easy now after implementing DP.

Question 6

Proof question: Only 1 person got a perfect score. All but two people got more than 1/2 credit.

Surprisingly, most of you came up with the wrong lemma! Simple counterexamples exist, so write tests for lemmas.

The lemma generation project by Ben is relevant

Gödel's Completeness Theorem

- $\Phi \vdash \phi$ iff $\Phi \vDash \phi$
- What does this mean for group theory?
- What about new proof techniques?
* Once we show the equivalence between $\vdash \phi$ and \vDash, we can transfer properties of one to the other
- Compactness theorem:
(a) $\Phi \vDash \phi$ iff there is a finite $\Phi_{0} \subseteq \Phi$ such that $\Phi_{0} \vDash \phi$
(b) Sat Φ iff for all finite $\Phi_{0} \subseteq \Phi$, Sat Φ_{0}
- From the proof, we get the Löwenheim-Skolem theorem: Every satisfiable and at most countable set of formulas is satisfiable over a domain which is at most countable

Consequences of Completeness

Theorem Every satisfiable set of formulas $\Phi \subseteq L^{S}$ is satisfiable over a domain of cardinality $\leq\left|L^{S}\right|$.

Theorem If $\Phi \subseteq L_{0}^{S}$ has arbitrarily large finite models (for every $i \in \omega, \Phi$ has a model whose domain has more than i elements), then it has an infinite model.

Proof Let

$$
\begin{aligned}
& \psi_{2}=\exists x \exists y x \not \equiv y \\
& \psi_{3}=\exists x \exists y \exists z(x \not \equiv y) \wedge(x \not \equiv z) \wedge(y \not \equiv z)
\end{aligned}
$$

Consider $\Phi \cup\left\{\psi_{i}: i>2\right\}$. Note that every finite subset has a model. By compactness, the set has a model. \square

Theories

T is a theory iff $T \subseteq L_{0}^{S}$ and for all $\varphi \in L_{0}^{S}, T \models \varphi \Rightarrow \varphi \in T$.
$\Phi \models=\{\varphi: \Phi \models \varphi\}$.
T is a theory iff $T=T^{\vDash}$
T is complete iff $\langle\forall \varphi:: \varphi \in T \vee \neg \varphi \in T\rangle$.
For a set of structures \mathbf{K}, $\operatorname{Th} \mathbf{K}=\left\{\varphi \in L_{0}^{S}: \forall \mathbf{U} \in \mathbf{K}, \mathbf{U} \models \varphi\right\}$

Axiomatizable Theories

Definition Theory T is axiomatizable iff there exists a decidable set Φ of sentences s.t. $T=\Phi^{\risingdotseq}$.

Definition Theory T is finitely axiomatizable iff $T=\Phi{ }^{\vDash}$, where Φ is a set of sentences s.t. $|\Phi|<\omega$.

Note that if Theory T is finitely axiomatizable $T=\{\varphi\}^{\vDash}$ (where φ is a conjunction of finitely many sentences).

Lemma (a) If T is finitely axiomatizable, it is axiomatizable. (b) If T is axiomatizable, it is r.e. (c) If T is axiomatizable and complete, it is recursive.

Non-Standard Models

- Let $N_{s}=\langle\omega, s, 0\rangle$, where s is the successor function. N_{s} satisfies:
- (the successor of any number differs from that number) $\langle\forall x X \neq S(x)\rangle$
- (s is injective) $\langle\forall x, y x \neq y \Rightarrow s(x) \neq s(y)\rangle$
- (every non-0 number has a predecessor) $\langle\forall x x \neq 0 \Rightarrow\langle\exists y y=s(x)\rangle\rangle$
- Let $\Psi=$ Th $N_{s} \cup\left\{x \neq 0, x \neq s(0), \ldots, x \neq s^{n}(0), \ldots\right\}$
- Every finite subset of Ψ has a model, so Ψ has a model (compactness)
* By Lowenheim-Skolem, let \mathfrak{u} be a countable model of Ψ
${ }^{\bullet} \mathfrak{U}$ includes $0, s(0), \ldots, s^{n}(0), \ldots$, and a, a non-standard number
- a has a successor, predecessor, and they have successors, predecessors
- so a is part of a \mathbb{Z}-chain
* hence, there is a countable model, \mathfrak{u}, which is not isomorphic to N_{s}
- While there is a complete axiomatization for $\mathrm{Th} N_{s}$, once the logic is powerful enough (add + , ${ }^{*},<$), completeness goes out the window

$$
0, s(0), \ldots, s^{n}(0), \ldots, \quad \ldots, p^{n}(a), \ldots, p(a), a, s(a), \ldots, s^{n}(a), \ldots
$$

Z-chain
$p(a)$ is the predecessor of $a \quad$ (isomophic to \mathbb{Z})

Gödel's 1st Incompleteness Theorem

- A set is recursive iff \in can be decided by a Turing machine
- Assuming Con(ZF), the set $\{\phi: \mathrm{ZF} \vdash \phi\}$ is not recursive
- More generally, for any consistent extension C of ZF:
- $\{\phi: C \vdash \phi\}$ is not recursive
- Intuitively clear: embed Turing machines in set theory
- Encode halting problem! as a formula in set theory
* Theorem: If C is a recursive consistent extension of $Z F$, then it is incomplete, i.e., there is a formula ϕ such that $\mathrm{C} \nvdash \Phi$ and $\mathrm{C} \forall \neg \phi$
- Proof Outline: If not, then for every ϕ, either $\mathrm{C} \vdash \phi$ or $\mathrm{C} \vdash \neg \phi$. We can now decide $\mathrm{C} \vdash \phi$: enumerate all proofs of C . Stop when a proof for ϕ or $\neg \phi$ is found

FOL Observations

- In ZF, the axiom of choice is neither provable nor refutable
- In ZFC, the continuum hypothesis is neither provable nor refutable
- By Gödel's first incompleteness theorem, no matter how we extend ZFC, there will always be sentences which are neither provable nor refutable
- There are non-standard models of \mathbb{N}, \mathbb{R} (un/countable)
- Since any reasonable proof theory has to be decidable, and TMs can be formalized in FOL (set theory), any logic can be reduced to FOL
- Building reliable computing systems requires having programs that can reason about other programs and this means we have to really understand what a proof is so that we can program a computer to do it

Presentation/Project Schedule

- $11 / 27$
- Ben B (40 min)
- Dustin (40 min)
- Alex (20 min)
- 11/30
- Ankit (40 min)
- Taylor (20 min)
- Nathaniel (20 min)
- Daniel (20 min)
- $12 / 4$
- Michael (20 min)
- Drew (40 min)
- \quad Ben $\mathrm{Q}(40 \mathrm{~min})$

Meet with me to review slides at least 3 days before your presentations

Exam 2:

Distribute 11/30 after class
Due 12/1 by 3PM (email)

