## Lecture 19

#### Pete Manolios Northeastern

**Computer-Aided Reasoning, Lecture 19** 

#### **Thomas Wahl**

#### Pitching his spring class

Slides by Pete Manolios for CS4820

## **Proof Theory**

- ▶ Goal: relate  $\Phi \vDash \varphi$  to  $\Phi \vdash \varphi$
- ▶ We defined  $\models$ , next we define  $\vdash$
- ▶  $\Phi \vdash \varphi$  denotes that  $\varphi$  is provable from  $\Phi$
- Provability should be machine checkable
- It may seem hopeless to nail down what a proof is
  - don't mathematicians expand their proof methods?
- FOL has a fairly simply set of obvious rules
- There are many equivalent ways of defining proof
  - In fact, we've seen how to do this already in a very sophisticated way using U-/UH-resolution

## **Sequent Calculus**

- A sequent is a nonempty sequence of formulas
- Sequent rules:



- The left rule says if you have a proof of both ¬ψ and ψ from Γυ {¬φ}, that constitutes a proof of φ from Γ
- ▶ If there is a derivation of the sequent  $\Gamma \phi$ , then we write  $\vdash \Gamma \phi$  and say that  $\Gamma \phi$  is *derivable*
- A formula φ is formally provable or derivable from a set Φ of formulas, written Φ ⊢ φ, iff there are finitely many formulas φ<sub>1</sub>, ..., φ<sub>n</sub> in Φ s.t. ⊢ φ<sub>1</sub> ... φ<sub>n</sub> φ

### **Sequent Rules**

#### Antecedent Rule (Ant)

$$\frac{\Gamma \quad \varphi}{\Gamma' \quad \varphi} \text{ if every member of } \Gamma \text{ is also a member of } \Gamma'.$$

A sequent  $\Gamma \varphi$  is *correct* if  $\Gamma \vDash \varphi$ 

A rule is *correct*: applied to correct sequents, it yields correct sequents Notice that the sequent rules are correct

#### Assumption Rule (Assm)

$$\frac{1}{\Gamma - \varphi} \text{ if } \varphi \text{ is a member of } \Gamma.$$

Proof by Cases Rule (PC)  $\Gamma \quad \psi \quad \varphi$  $\frac{\Gamma \quad \neg \psi \quad \varphi}{\Gamma \quad \varphi}$  

#### Sequent Rules for v

 $\begin{array}{l} \lor \textbf{-Rule for the Antecedent (\lor A)} \\ \Gamma \quad \varphi \quad \xi \\ \frac{\Gamma \quad \psi \quad \xi}{\Gamma \quad (\varphi \lor \psi) \quad \xi} \end{array} \end{array}$ 

 $\lor$ -Rule for the Succedent ( $\lor$  S)

$$(a)\frac{\Gamma \varphi}{\Gamma (\varphi \lor \psi)} \qquad (b)\frac{\Gamma \varphi}{\Gamma (\psi \lor \varphi)}$$

### **Derived Sequent Rules**

#### Tertium non datur (Ctr)

 $(\varphi \lor \neg \varphi)$ Proof? We can prove it by assuming  $\varphi$ , getting  $\varphi \lor \neg \varphi$  and similarly with  $\neg \varphi$ .

- Defining derived rules helps us keep proofs short
- ▶ For our purposes, we want a minimal set of built-in rules
- If we wanted to use the logic, we would want a large set of rules (consider ACL2s)

#### **Sequent Rules**

#### Reflexivity Rule for Equality ( $\equiv$ )

 $\overline{t \equiv t}$ 

Substitution Rule for Equality (Sub)

$$\frac{\Gamma}{\Gamma} \qquad \frac{\varphi \frac{t}{x}}{\Gamma} \quad t \equiv t' \quad \varphi \frac{t'}{x}$$

- Can derive that equality is symmetric and transitive (so equivalence)
- Can derive that equality is a congruence
- Suppose Φ is a set of equations (universal formulas of the form s=t) and φ is an equation
  - ▶ Then,  $\Phi \models \varphi$  iff  $\Phi \vdash \varphi$  where we only use Assm, Sub, equivalence and congruence rules (Birkhoff's theorem)
  - More on this soon

### Sequent Rules for **3**

#### $\exists$ -Introduction in the Succedent ( $\exists$ S)

 $\frac{\Gamma \quad \varphi \frac{t}{x}}{\Gamma \quad \exists x \varphi}$ 

**Proof** Suppose  $\Gamma \models \varphi \frac{t}{x}$ . If  $\mathcal{J} \models \Gamma$ , we have  $\mathcal{J} \models \varphi \frac{t}{x}$ . By the substitution lemma,  $\mathcal{J} \frac{\mathcal{J} \cdot t}{x} \models \varphi$  and thus  $\mathcal{J} \models \exists x \varphi$ .  $\Box$ 

#### $\exists$ -Introduction in the Antecedent ( $\exists$ A)

$$\frac{\Gamma \quad \varphi \frac{y}{x} \quad \psi}{\Gamma \quad \exists x \varphi \quad \psi} \text{ if } y \text{ is not free in } \Gamma \ \exists x \varphi \ \psi.$$

**Proof** So,  $\Gamma \varphi_x^{\underline{y}} \models \psi$ . Suppose  $\mathcal{J} \models \Gamma$  and  $\mathcal{J} \models \exists x \varphi$ . Then there is an a such that  $\mathcal{J}_{\overline{x}}^{\underline{a}} \models \varphi$ , but by the coincidence lemma,  $(\mathcal{J}_{\overline{y}}^{\underline{a}})_{\overline{x}}^{\underline{a}} \models \varphi$ . Since  $\mathcal{J}_{\overline{y}}^{\underline{a}}(y) = a$ , we have  $(\mathcal{J}_{\overline{y}}^{\underline{a}})\frac{\mathcal{J}_{\overline{y}}^{\underline{a}}(y)}{x} \models \varphi$  and by substitution lemma  $\mathcal{J}_{\overline{y}}^{\underline{a}} \models \varphi_{\overline{x}}^{\underline{y}}$ . Since  $\mathcal{J} \models \Gamma$  and  $y \notin$  free. $\Gamma$ , we get  $\mathcal{J}_{\overline{y}}^{\underline{a}} \models \Gamma$ . Now, we get  $\mathcal{J}_{\overline{y}}^{\underline{a}} \models \psi$  and therefore  $\mathcal{J} \models \psi$  because  $y \notin$  free. $\psi$ .  $\Box$ 

### Gödel's Completeness Part 1

- ▶ For all  $\Phi$  and  $\phi$ ,  $\Phi \vdash \phi$  iff there is a finite  $\Phi_0 \subseteq \Phi$  s.t.  $\Phi_0 \vdash \phi$ 
  - Directly from definition of derivable
- Easy part of Gödel's completeness theorem
  - ▶  $\Phi \vdash \varphi$  implies  $\Phi \vDash \varphi$
  - By induction on structure of derivations, using the correctness of sequent rules

### Consistency

- ▶  $\Phi$  is *consistent*, Con  $\Phi$ , iff there is no formula  $\phi$  s.t.  $\Phi \vdash \phi$  and  $\Phi \vdash \neg \phi$
- ▶  $\Phi$  is *inconsistent*, Inc  $\Phi$ , iff  $\Phi$  is not consistent:  $\exists \varphi$  s.t.  $\Phi \vdash \varphi$  and  $\Phi \vdash \neg \varphi$
- ▶ Inc  $\Phi$  iff for all  $\varphi$ ,  $\Phi \vdash \varphi$
- ▶ Con  $\Phi$  iff there is some  $\phi$  s.t. not  $\Phi \vdash \phi$
- ▶ For all  $\Phi$ , Con  $\Phi$  iff Con  $\Phi_0$  for all finite subsets  $\Phi_0$  of  $\Phi$
- Sat Φ implies Con Φ
  - ▶ Inc  $\Phi \Rightarrow \Phi \vdash \phi$  and  $\Phi \vdash \neg \phi \Rightarrow \Phi \vdash \phi$  and  $\Phi \vdash \neg \phi \Rightarrow$  not Sat  $\Phi$
- For all  $\Phi$  and  $\phi$  the following holds
  - ▶  $\Phi \vdash \varphi$  iff Inc  $\Phi \cup \{\neg \varphi\}$
  - ▶  $\Phi \vdash \neg \varphi$  iff Inc  $\Phi \cup \{\varphi\}$
  - ▶ If Con  $\Phi$ , then Con  $\Phi \cup \{\varphi\}$  or Con  $\Phi \cup \{\neg\varphi\}$

### **Useful Lemma**

For all  $i \in \omega$ , let  $S_i$  be a symbol set s.t.  $S_i \subseteq S_{i+1}$  and let  $\Phi_i$  be a set of  $S_i$ -formulae s.t.  $Con_{Si} \Phi_i$  and  $\Phi_i \subseteq \Phi_{i+1}$ . Let  $S = U_{i \in \omega} S_i$  and  $\Phi = U_{i \in \omega} \Phi_i$ . Then  $Con_S \Phi$ 

Proof:

Inc<sub>s</sub>  $\Phi$   $\Rightarrow$  { Inc<sub>s</sub>  $\Psi$  for finite  $\Psi$  s.t.  $\Psi \subseteq \Phi$ , thus  $\Psi \subseteq \Phi_k$  for some k } Inc<sub>s</sub>  $\Phi_k$   $\Rightarrow$  {Any derivation of  $\phi$ ,  $\neg \phi$  is finite so all symbols are in  $S_m$  for some  $m \ge k$  } Inc<sub>sm</sub>  $\Phi_m$ 

### Gödel's Completeness Part 2

- ▶ Gödel's completeness theorem, part 2:  $\Phi \vDash \varphi$  implies  $\Phi \vdash \varphi$
- Lemma: Con Φ implies Sat Φ
- ▶ Proof:  $\Phi \vDash \varphi$ 
  - iff {previous lemma} not Sat ( $\Phi \cup \{\neg \varphi\}$ )
  - iff {above lemma, soundness} not Con ( $\Phi \cup \{\neg \varphi\}$ )
  - iff {hint: use Contradiction Rule}  $\Phi \vdash \varphi$

#### Contradiction Rule (Ctr)

# **Henkin's Theorem**

- ▶ The insight: if Con  $\Phi$ , just reflect the syntax into the semantics
- $\blacktriangleright$   $\mathscr{J} = \langle T^{S}, a, \beta \rangle$  (so the universe is the set of terms)
  - ▶  $\beta(v_i) = v_i$
  - ▶ a.c = c, a.f(t) = ft
- ▶ This doesn't work!  $\mathscr{J}(v_0) \neq \mathscr{J}(v_1)$ , but what if  $v_0 \equiv v_1 \in \Phi$ ?
- The plan is to fix this and a number of other problems until it works!
- First idea: use equivalence classes of terms, so that provably equivalent terms are in the same class, so v<sub>0</sub> and v<sub>1</sub> will be equal under *f* because they are in the same equivalence class

## **Term Structure**

Define the equivalence relation on T<sup>S</sup>

 $t_1 \sim t_2$  iff  $\Phi \vdash t_1 \equiv t_2$ 

- 1. ~ is an equivalence relation.
- 2. If t<sub>1</sub> ~ t'<sub>1</sub>,...,t<sub>n</sub> ~ t'<sub>n</sub> then for n-ary f ∈ S: ft<sub>1</sub>...t<sub>n</sub> ~ ft'<sub>1</sub>...t'<sub>n</sub> and for n-ary R ∈ S: Φ ⊢ Rt<sub>1</sub>...t<sub>n</sub> iff Φ ⊢ Rt'<sub>1</sub>...t'<sub>n</sub>.
  Let t̄ = {t' ∈ T<sup>S</sup> : t ~ t'}, i.e., t̄ is the equivalence class of t. Let T<sup>Φ</sup> be the set of equivalence classes: T<sup>Φ</sup> = {t̄ : t ∈ T<sup>S</sup>}. Note that T<sup>Φ</sup> is not empty. We now define the term structure over T<sup>Φ</sup>, T<sup>Φ</sup> as follows.

1. 
$$c^{\mathcal{T}^{\Phi}} = \overline{c}$$
  
2.  $f^{\mathcal{T}^{\Phi}}(\overline{t_1}, \dots, \overline{t_n}) = \overline{ft_1 \dots t_n}$   
3.  $R^{\mathcal{T}^{\Phi}}\overline{t_1} \dots \overline{t_n}$  iff  $\Phi \vdash Rt_1 \dots t_n$ 

## **Term Interpretation**

We define the *term interpretation* associated with  $\Phi$  to be  $\mathcal{J}^{\Phi} = \langle \mathcal{T}^{\Phi}, \beta^{\Phi} \rangle$ , where  $\beta^{\Phi}(x) = \overline{x}$ .

- 1. For all t,  $\mathcal{J}^{\Phi}(t) = \overline{t}$ .
- 2. For every atomic formula  $\varphi$ ,  $\mathcal{J}^{\Phi} \models \varphi$  iff  $\Phi \vdash \varphi$ .
- 3. For every formula  $\varphi$  and pairwise disjoint variables  $x_1, \ldots, x_n$ (a)  $\mathcal{J}^{\varphi} \models \exists x_1 \ldots \exists x_n \varphi$  iff there are  $t_1, \ldots, t_n \in T^S$  s.t.  $\mathcal{J}^{\Phi} \models \varphi \frac{t_1 \ldots t_n}{x_1 \ldots x_n}$ .

(b)  $\mathcal{J}^{\varphi} \models \forall x_1 \dots \forall x_n \varphi \text{ iff for all } t_1, \dots, t_n \in T^S \text{ we have } \mathcal{J}^{\Phi} \models \varphi \frac{t_1 \dots t_n}{x_1 \dots x_n}.$ 

## **More Problems**

Where are we? Well, by the previous lemma  $\mathcal{J}^{\Phi}$  is a model of the atomic formulas in  $\Phi$ , but we do not know that it is a model of all formulas in  $\Phi$ . In fact, it isn't. Consider  $\Phi = \{\exists x R x\}$ . Then, by (3) of the previous lemma,  $\mathcal{J}^{\Phi} \models \Phi$ iff there is a term (in our case a variable) y such that  $\exists x R x \vdash R y$ , but this does not hold, as one of the exercises requires you to show. Consider  $\Phi \cup \{\neg R y : y \text{ is}$ a variable  $\}$ . This set is satisfiable, thus consistent, but for no term  $t \in T^S$  do we have  $\Phi \vdash Rt$ .

- 1. For all t,  $\mathcal{J}^{\Phi}(t) = \overline{t}$ .
- 2. For every atomic formula  $\varphi$ ,  $\mathcal{J}^{\Phi} \models \varphi$  iff  $\Phi \vdash \varphi$ .
- 3. For every formula  $\varphi$  and pairwise disjoint variables  $x_1, \ldots, x_n$

(a)  $\mathcal{J}^{\varphi} \models \exists x_1 \dots \exists x_n \varphi \text{ iff there are } t_1, \dots, t_n \in T^S \text{ s.t. } \mathcal{J}^{\Phi} \models \varphi \frac{t_1 \dots t_n}{x_1 \dots x_n}.$ (b)  $\mathcal{J}^{\varphi} \models \forall x_1 \dots \forall x_n \varphi \text{ iff for all } t_1, \dots, t_n \in T^S \text{ we have } \mathcal{J}^{\Phi} \models \varphi \frac{t_1 \dots t_n}{x_1 \dots x_n}.$ 

## **Closure Conditions**

 $\begin{array}{l} \Phi \text{ is negation complete iff for every formula } \varphi, \ \Phi \vdash \varphi \text{ or } \Phi \vdash \neg \varphi. \\ \Phi \text{ contains witnesses iff for every formula of the form } \exists x \varphi, \text{ there is a term } t \\ \text{ such that } \Phi \vdash (\exists x \varphi \rightarrow \varphi \frac{t}{x}). \end{array}$ 

**Lemma 21** If  $\Phi$  is consistent, negation complete, and contains witnesses, then for all  $\varphi$  and  $\psi$ .

- 1.  $\Phi \vdash \neg \varphi$  iff not  $\Phi \vdash \varphi$
- 2.  $\Phi \vdash (\varphi \lor \psi)$  iff  $\Phi \vdash \varphi$  or  $\Phi \vdash \psi$
- 3.  $\Phi \vdash \exists x \varphi \text{ iff there is a term } t \text{ s.t. } \Phi \vdash \varphi \frac{t}{x}$

# **Henkin's Theorem**

If  $\Phi$  is consistent, negation complete, and contains witnesses, then  $\mathcal{J}^{\Phi} \models \Phi$ 

We now show that any consistent set of formulas can be extended to one that is consistent, negation complete, and contains witnesses. Then, from Henkin's theorem we get the completeness theorem.

we assume that  $|S| \leq \omega$ .

# **Completeness Theorem**

**Theorem 4** Let  $\Phi \subseteq L^S$  be a consistent set of formulas and let  $|free(\Phi)| < \omega$ . Then,  $\Phi$  is satisfiable.

Proof

 $\operatorname{Con}\,\Phi\wedge\Phi\subseteq L^S\wedge|\operatorname{free}(\Phi)|<\omega$ 

 $\Rightarrow \{ \text{Lemma 23} \}$ 

 $\exists \Psi \text{ s.t. } \text{Con } \Psi \wedge \Phi \subseteq \Psi \subseteq L^S \wedge \Psi \text{ contains witnesses}$ 

 $\Rightarrow \{ \text{Lemma 22} \}$ 

 $\exists \Theta \text{ s.t. } \text{Con } \Theta \land \Psi \subseteq \Theta \subseteq L^S \land \Theta \text{ contains witnesses and is negation complete}$ 

 $\Rightarrow$  { Henkin's Theorem }

 $\mathcal{J}^{\Theta}$  is a model of  $\Theta, \Psi$ , and  $\Phi$ 

 $\Rightarrow$  { Definition of Sat }

Sat  $\Phi$   $\Box$ 

# **Negation Completeness**

**Lemma 22** Let  $\Psi \subseteq L^S$ , Con  $\Psi$ . Then there exists  $\Theta$  s.t. Con  $\Theta$ ,  $\Psi \subseteq \Theta \subseteq L^S$ , and  $\Theta$  is negation complete.

**Proof** Enumerate  $L^S$ :  $\varphi_0, \varphi_1, \varphi_2, \ldots$  Define  $\Theta_n$  as follows:

 $\Theta_0 = \Psi$ 

 $\Theta_{n+1} = \Theta_n \cup \alpha$ , where  $\alpha = \{\varphi_n\}$  if Con  $\Theta_n \cup \{\varphi_n\}$  and  $\alpha = \emptyset$  otherwise.

Finally,  $\Theta = \bigcup_{i \in \omega} \Theta_n$ . Since for all i, Con  $\Theta_i$ , by lemma 18, we have Con  $\Theta$ .  $\Theta$  is also negation complete. For every i if  $\Theta \not\vdash \neg \varphi_i$ , then Con  $\Theta \cup \{\varphi_i\}$ (lemma 17) so Con  $\Theta \cup \{\varphi_i\}$  so  $\varphi_i \in \Theta_{n+1} \subseteq \Theta$ .  $\Box$ 

## Witnesses

**Lemma 23** Let  $\Phi \subseteq L^S$ , Con  $\Phi$ ,  $|free(\Phi)| < \omega$ . Then there exists  $\Psi$  s.t. Con  $\Psi$ ,  $\Phi \subseteq \Psi \subseteq L^S$ , and  $\Psi$  contains witnesses.

**Proof** Enumerate all  $\varphi \in L^S$  beginning with an existential quantifier:  $\exists x_0 \varphi_0, \exists x_1 \varphi_1, \dots$ Now, define  $\psi_n$  as follows:

$$\psi_n = (\exists x_n \varphi_n o \varphi_n \frac{y_n}{x_n})$$

where  $y_n$  is the variable with the smallest index not free in  $\Phi_n = \Phi \cup \{\varphi_i : 0 \leq i < n\}$ . Let  $\Psi = \bigcup_{i \in \omega} \Phi_i$ . Now,  $\Phi \subseteq \Psi$  and  $\Psi$  contains witnesses. If for all  $i \in \omega$ , Con  $\Phi_i$  then Con  $\Psi$  by lemma 18. Proof by induction.

## Gödel's Completeness Theorem

 $\blacktriangleright \Phi \vdash \varphi \text{ iff } \Phi \vDash \varphi$ 

- What does this mean for group theory?
- What about new proof techniques?
- ▶ Once we show the equivalence between  $\vdash \phi$  and  $\models$ , we can transfer properties of one to the other
  - Compactness theorem:
     (a) Φ ⊨ φ iff there is a finite Φ<sub>0</sub> ⊆ Φ such that Φ<sub>0</sub> ⊨ φ
     (b) Sat Φ iff for all finite Φ<sub>0</sub> ⊆ Φ, Sat Φ<sub>0</sub>
- From the proof, we get the Löwenheim-Skolem theorem: Every satisfiable and at most countable set of formulas is satisfiable over a domain which is at most countable