Lecture 18

Pete Manolios
Northeastern

Computer-Aided Reasoning, Lecture 18

Set of Support

> Partition T the input clauses into two disjoint sets, S, the set of support of T
and the unsupported clauses U. Restrict U-resolution so that no two
clauses in U are resolved together

» Theorem: Let T be an Unsat set of clauses and let S be a subset of T where
T\S is Sat; then there is a U-resolution proof of Usat(7) with set of support S

» ldea: focus U-resolution on finding resolvents that contribute to the solution
> For example say A is a set of standard mathematical axioms

> You want to prove B=C

> Using U-resolution you will want to derive the empty clause from A, B, -C

> Since Sat(A) you can choose B, —C as the set of support

> Since A, B are Sat (presumably), you can choose —C as the set of support

» Suppose —C is the only negative clause, then similar to negative resolution,
but negative resolution is more restrictive; however, set of support often
makes up for this by finding shorter proofs

Slides by Pete Manolios for CS4820

Universal Horn Formulas

> A formula is a universal Horn formula if it is logically equivalent to a
conjunction of formulas of the following form, where ¢, ¢, are atomic

(VXp, .o, @) positive differs from positive

(VX|, et X, @A AN, = @) positive resolution! oy
_ we’ll use pos/neg in this

(VX[oo X, 2 V- V2, negative sense during the lecture

> Let ® be a set of universal Horn sentences s.t. Sat(®); let ®+ be the subset
of positive sentences in ®; let ; be atomic over vars xi,...,Xn; then

PO E (Po A Ao iff O+E=(Po A - APk)o if Piois ground for all i
POk (GXx7,....X0 Yo A APr iff O = (EX7,...%0 Do A A Pro

> The above is a key insight that often allows us to restrict attention to
positive universal Horn formulas

> For propositional logic, Sat for Horn formulas is in P!

Slides by Pete Manolios for CS4820

Free Models

» Herbrand universe, H, of FO language L is the set of all ground terms of L,
except that if L has no constants, we add ¢ to make the universe non-empty

> Let @ be a set of universal Horn sentences over L s.t. Sat(®)
? There is 4%, an interpretation for ® over H s.t. 4% = ¢ iff ® = ¢ for all atomic ¢
> Note: if ® = t1=t2then 4®=ti=to We include = here but we’re still only considering
> Note: If @ = R(t1, ..., t) then g0 =R(t, ..., t,) Cecking FO wlout =
> Note: If neither ® = R(t4, ..., th) nor ® = -R(t4, ..., tn) then 4®=-R(t4, ...,)
> So 4%, is minimal (free): it only contains positive atomic information
P There is a homomorphism between 4% and any other model of ®
> We have reduced ® = to 4° = ¢

> Instead of checking if every interpretation of ® satisfies ¢
> We only need to check a single, minimal interpretation

> Enables us to find solutions to queries in a systematic way

> Basis for logic programming

Slides by Pete Manolios for CS4820

Logic Programming

> Let P be a set of positive clauses and let N be a negative clause
> A sequence N, ..., Nk of negative clauses is a UH-resolution from 8 and N
iff 3 Po, ..., Pk-1€ P s.t. No= N and N1 is a U-resolvent of P, and N fori < k

> A negative clause N’ is UH-derivable from P and N iff 3 a UH-resolution
No, ..., Nx from B and N with N’=Nx

Po N=No
w
Notice that this is a p
very restricted kind \ N
of U-resolution w
Pk-1 N-1
\A
N’=Nj

Slides by Pete Manolios for CS4820

Logic Programming

> Let P be a set of positive clauses and let N be a negative clause

> A sequence N, ..., Nx of negative clauses is a UH-resolution from 8 and N
iff 3 Po, ..., Pk-1€ P s.t. No= N and N7 is a U-resolvent of P; and N; fori < k

> A negative clause N’ is UH-derivable from P and N iff 3 a UH-resolution
No, ..., Nx from B and N with N’=Nx

> Let K be a set of clauses, UHRes(K)=H U{N | N is a negative clause and 3 a
positive/negative P N’e K s.t. N is a U-resolvent of P and N’}

> UHReso(K)=%K Standard recursive definition
> UHResn.1(%)=UHRes(UHResn(%)) on the naturals

Standard recursive definition
P UHReSw(gC)= U newUHReSn(gC) with limit ordinals

Slides by Pete Manolios for CS4820

Logic Programming ...

K(D)=clauses of ©
Theorem: Let @ be a set of positive universal Horn sentences, P = K (D), P,

atomic, (3x7,....xn Po A -~ A Pmy @ sentence and N = {—o, ..., "Ym}. Then:
2@ = (3xX71,....Xn Po A - A Py iff @ is UH-derivable from P and N
> Given such a UH-derivation, with o+, ..., ok, ® = (Yo A - A Pm)Ok...O1
2If O = (Po A - APm)T, then there is a UH-derivation with (ok...01) < T
> So, we can find all solutions to the existential!

Po N= {=o, ..., 7Yn}
\ 7
P N-
\ 4
P Ni-1
\ A
D

Slides by Pete Manolios for CS4820

Logic Programming Example

O = {(Vx,y P(x,y,¢) = R(y, g(f(x)))), (Vx,y P(f(x),y,0))} F (Ix,y R(f(x), g()))
{=P(u,v,c), R(v,g(f(w)))} {~R(f(x),g(y))}

\%: f(-x)af(u) < V,y

{PUf),y, 0} { =P, f(x),0)}
0y = f(x), f(v) < y,u

%)

> Recall: given a UH-derivation, with o1, ..., ok, ® = (Lo A *** A Pm)Ok...O1
> So, the following hold

D F R(f(x), (f(f(V)) © F (Vx,v R(f(x), g(f(f(M))))

> And we have a family of solutions

Slides by Pete Manolios for CS4820

Prolog

> One of the most popular logic programming languages is Prolog
> Given a set of Horn clauses and a query, find solutions
This is implication, ie, X:-YisY = X
> AppRules = (App nil L L), (App (cons h T), L, (cons h A)) :- App(T,L,A)
> AppRules, (App '(1 2),’(34), Z) = Z="(1 2 3 4)
> AppRules, (App '(12),Y,’(1234)) = Y="(34)
> AppRules, (App X, Y, ’(1 2 3 4)) = X=nil, Y="(1 2 3 4), ... (more solutions)

> An example of declarative programming

» Prolog searches in a way that may lead to looping, provides support to
control search, etc.

Slides by Pete Manolios for CS4820

Connections with ACL2

For any FO ¢, we can find a universal in an expanded language such
that ¢ is satisfiable iff is satisfiable.

(Yu,v Iz ¢p(u,v,2))) (Yu,v {3z (App u v) = (Rev z2)))
First, PNF, and push existentials left (2nd order logic)
(AF, (Vu,v ¢p(u, v, F (u,v)))) (AF, (VYu,v (App u v) = (Rev (F, u v))))
Previously, we saw how to go back to FO while preserving SAT with
(Yu,v ¢p(u,v, F(u,v))) (Yu,v (App u v) = (Rev (F, u v))
But what about preserving validity? This method doesn’t work, as we’ve seen.

Can we make it work in a FO setting?
This is how ACL2 handles quantifiers
(Vu,v (Iz (App u v) = (Rev 2)))

_} DEMO

(Vu,v (E, uv)) As above, but not enough

(E.uv) = (App uv) = (Rev (F, uv)) Constrain Fz:

(App u v) = (Rev z) = (E. uv) if (App u v) = (Rev 2) has solution
then F; is also a solution

Slides by Pete Manolios for CS4820

Dealing with Equality

> Plan for a FO validity checker w/=: Given FO ¢, negate & Skolemize to get
universal P s.t. Valid(¢) iff Unsat(p). Convert ¢ into equivalent CNF XK.
Generate (* in expanded language wout/= s.t. Sat(y) iff Sat(p*). Use U-
Resolution: Unsat(}*) iff @cUResw(K) iff an s.t. dcUResn(¥K)

> To go from to P*

> Introduce a new binary relation symbol, E

> Replace ti=t> with E(t1, t2) everywhere in

> Force E to be an equivalence relation by adding clauses
> {EKX)} {-EMGY), E(v.X)}, {=E.Y), ~E(y.2), Ex.2)}

> Force E to be a congruence
e {=E(X1,Y1),...,mEXn,Yn), E(f(x1,...,Xn), f(y1,...,yn))} fOr every n-ary fin @
e {=E(x1,y1),...,mE(Xn,yn), "R(X1,...,Xn), R(y1,,,,yn)} fOr every n-ary R in

> Notice all the clauses are Horn!

Slides by Pete Manolios for CS4820

