Lecture 17

Pete Manolios Northeastern

Computer-Aided Reasoning, Lecture 17

Unification for FOL

- Let C be a clause; if we negate all literals in C, we get C^{-}
- A unifier for a clause $C=\left\{I_{1}, \ldots, I_{n}\right\}$ is a unifier for $\left\{\left(I_{1}, I_{2}\right),\left(I_{2}, I_{3}\right), \ldots,\left(I_{n-1}, I_{n}\right)\right\}$
* Let C, D be clauses (assume there are no common variables since we can rename vars). K is a U-resolvent of C, D iff there are non-empty $\underline{C^{\prime} \subseteq C, ~ \underline{D}{ }^{\prime} \subseteq D}$ s.t. σ is a unifier for $\underline{C}^{\prime} \cup \underline{D}^{\prime-}$ and $K=\left(C \backslash \underline{C}^{\prime} \cup D \backslash \underline{D}^{\prime}\right) \sigma$. Note $\left|\underline{C}^{\prime}\right|,\left|\underline{D}^{\prime}\right|$ can be >1
$C=\{\neg R(x), R(f(x))\} D=\{\neg R(f(f(x))), P(x)\} \quad$ corresponds to
$\langle\forall x(\neg R(x) \vee R(f(x))) \wedge(\neg R(f(f(x))) \vee P(x))\rangle \quad$ equivalent to
$\langle\forall x \neg R(x) \vee R(f(x))\rangle \wedge\langle\forall x \neg R(f(f(x))) \vee P(x)\rangle \quad$ equivalent to
$\langle\forall x \neg R(x) \vee R(f(x))\rangle \wedge\langle\forall y \neg R(f(f(y))) \vee P(y)\rangle \quad$ corresponds to
$C=\{\neg R(x), R(f(x))\} D=\{\neg R(f(f(y)) \vee P(y)\}$
so I will rename variables in clauses as I see fit

Recall from the Prenex Normal Form algorithm (let z, y be x in the example)
$\langle\forall x:: \phi\rangle \wedge\langle\forall y:: \psi\rangle \equiv\left\langle\forall z:: \phi \frac{z}{x} \wedge \psi \frac{z}{y}\right\rangle$ where z is not free in LHS

U-resolvent example

- Let C be a clause; if we negate all literals in C, we get C -
- A unifier for a clause $C=\left\{I_{1}, \ldots, I_{n}\right\}$ is a unifier for $\left\{\left(I_{1}, I_{2}\right),\left(I_{2}, I_{3}\right), \ldots,\left(I_{n-1}, I_{n}\right)\right\}$
- Let C, D be clauses (assume there are no common variables since we can rename vars). K is a U-resolvent of C, D iff there are non-empty $\underline{C^{\prime} \subseteq C, ~ \underline{D^{\prime}} \subseteq D}$ s.t. σ is a unifier for $\underline{C^{\prime}} \cup \underline{D}^{\prime}$ and $K=\left(C \backslash \underline{C}^{\prime} \cup D \underline{D^{\prime}}\right) \sigma$. Note $\left|\underline{C}^{\prime}\right|,\left|\underline{D^{\prime}}\right|$ can be >1

$$
\begin{gathered}
C=\{\neg R(x), R(f(x))\} D=\{\neg R(f(f(x))), P(x)\} \\
\left\{\neg R(x), \frac{R(f(x))\}}{} \frac{\{\neg R(f(f(y))),}{}, P(y)\right\} \\
\sigma=f(y) \leftarrow x
\end{gathered}
$$

U-resolvent example

- Let C be a clause; if we negate all literals in C, we get C^{-}
- A unifier for a clause $C=\left\{I_{1}, \ldots, I_{n}\right\}$ is a unifier for $\left\{\left(l_{1}, I_{2}\right),\left(I_{2}, I_{3}\right), \ldots,\left(I_{n-1}, I_{n}\right)\right\}$
- Let C, D be clauses (assume there are no common variables since we can rename vars). K is a U-resolvent of C, D iff there are non-empty $\underline{C^{\prime} \subseteq C, ~} \underline{D^{\prime} \subseteq D}$ s.t. σ is a unifier for $\underline{C}^{\prime} \cup \underline{D}^{\prime}$ and $K=\left(C \backslash \underline{C}^{\prime} \cup D \underline{D^{\prime}}\right) \sigma$. Note $\left|\underline{C}^{\prime}\right|,\left|\underline{D}^{\prime}\right|$ can be >1
\otimes Try this: $C=\{\neg S(c, x), \neg S(x, x)\}, D=\{S(x, x), S(c, x)\}$
One possible U-resolution step

Tautology, so useless

U-resolvent example

- Let C be a clause; if we negate all literals in C, we get C^{-}
- A unifier for a clause $C=\left\{I_{1}, \ldots, I_{n}\right\}$ is a unifier for $\left\{\left(I_{1}, I_{2}\right),\left(I_{2}, I_{3}\right), \ldots,\left(I_{n-1}, I_{n}\right)\right\}$
- Let C, D be clauses (assume there are no common variables since we can rename vars). K is a U-resolvent of C, D iff there are non-empty $\underline{C^{\prime} \subseteq C, ~} \underline{D^{\prime} \subseteq D}$ s.t. σ is a unifier for $\underline{C}^{\prime} \cup \underline{D}^{\prime-}$ and $K=\left(C \backslash \underline{C}^{\prime} \cup D \underline{D^{\prime}}\right) \sigma$. Note $\left|\underline{C}^{\prime}\right|,\left|\underline{D}^{\prime}\right|$ can be >1
\otimes Try this: $C=\{\neg S(c, x), \neg S(x, x)\}, D=\{S(x, x), S(c, x)\}$

U-resolvent example

- Let C be a clause; if we negate all literals in C, we get C^{-}
- A unifier for a clause $C=\left\{I_{1}, \ldots, I_{n}\right\}$ is a unifier for $\left\{\left(I_{1}, I_{2}\right),\left(I_{2}, I_{3}\right), \ldots,\left(I_{n-1}, I_{n}\right)\right\}$
- Let C, D be clauses (assume there are no common variables since we can rename vars). K is a U-resolvent of C, D iff there are non-empty $\underline{C^{\prime} \subseteq C, ~} \underline{D^{\prime} \subseteq D}$ s.t. σ is a unifier for $\underline{C}^{\prime} \cup \underline{D}^{\prime}$ and $K=\left(C \backslash \underline{C}^{\prime} \cup D \underline{D^{\prime}}\right) \sigma$. Note $\left|\underline{C}^{\prime}\right|,\left|\underline{D}^{\prime}\right|$ can be >1
\otimes Try this: $C=\{\neg S(c, x), \neg S(x, x)\}, D=\{S(x, x), S(c, x)\}$

U-resolvent example

- Let C be a clause; if we negate all literals in C, we get C -
- A unifier for a clause $C=\left\{I_{1}, \ldots, l_{n}\right\}$ is a unifier for $\left\{\left(l_{1}, I_{2}\right),\left(I_{2}, I_{3}\right), \ldots,\left(I_{n-1}, l_{n}\right)\right\}$
- Let C, D be clauses (assume there are no common variables since we can rename vars). K is a U-resolvent of C, D iff there are non-empty $\underline{C^{\prime} \subseteq C, ~} \underline{D^{\prime} \subseteq D}$ s.t. σ is a unifier for $\underline{C}^{\prime} \cup \underline{D}^{\prime-}$ and $K=\left(C \backslash \underline{C}^{\prime} \cup D \underline{D^{\prime}}\right) \sigma$. Note $\left|\underline{C}^{\prime}\right|,\left|\underline{D}^{\prime}\right|$ can be >1
- Try this: $C=\{\neg S(c, x), \neg S(x, x)\}, D=\{S(x, x), S(c, x)\}$

- This is the Barber of Seville problem: Prove that there is no barber who shaves all those, and those only, who do not shave themselves.
$\neg\langle\exists b\langle\forall x S(b, x) \equiv \neg S(x, x)\rangle\rangle$

Unification for FOL

- Let C be a clause; if we negate all literals in C, we get C -
- A unifier for a clause $C=\left\{I_{1}, \ldots, I_{n}\right\}$ is a unifier for $\left\{\left(I_{1}, I_{2}\right),\left(I_{2}, I_{3}\right), \ldots,\left(I_{n-1}, I_{n}\right)\right\}$
- Let C, D be clauses (assume there are no common variables since we can rename vars). K is a U-resolvent of C, D iff there are non-empty $\underline{C^{\prime} \subseteq C, ~} \underline{D^{\prime} \subseteq D}$ s.t. σ is a unifier for $\underline{C^{\prime}} \cup \underline{D}^{\prime}$ and $K=\left(C \backslash \underline{C}^{\prime} \cup D \backslash \underline{D^{\prime}}\right) \sigma$. Note $\left|\underline{C}^{\prime}\right|,\left|\underline{D^{\prime}}\right|$ can be >1
- Lemma: Let C, D be clauses. Then
* every resolvent of ground instances of C, D is a ground instance of a U resolvent of C, D
- every ground instance of a U-resolvent of C, D is a resolvent of ground instances of C, D
- Let \mathcal{K} be a set of ground clauses, $\operatorname{Res}(\mathcal{K})=\mathcal{K} \cup\{K \mid K$ is a resolvent of $C, D \in \mathcal{K}\}$
- Let \mathcal{K} be a set of FO clauses, $\mathrm{URes}(\mathcal{K})=\mathcal{K} \cup\{K \mid K$ is a U-resolvent of $C, D \in \mathcal{K}\}$
Δ Let $\operatorname{URes}_{0}(\mathcal{K})=\mathcal{K}, \operatorname{URes}_{n+1}(\mathcal{K})=U R e s\left(\operatorname{URes}_{n}(\mathcal{K})\right), \operatorname{URes}_{\omega}(\mathcal{K})=\cup_{n \in \omega} \operatorname{URes}_{n}(\mathcal{K})$

Unification for FOL

- Let C, D be clauses (assume there are no common variables since we can rename vars). K is a U-resolvent of C, D iff there are non-empty $\underline{C^{\prime} \subseteq C, ~ \underline{D} \subseteq} \subseteq D$ s.t. σ is a unifier for $\underline{C}^{\prime} \cup \underline{D}^{\prime}$ and $K=\left(C \backslash \underline{C}^{\prime} \cup D \backslash \underline{D^{\prime}}\right) \sigma$. Note $\left|\underline{C}^{\prime}\right|,\left|\underline{D}^{\prime}\right|$ can be >1
- $G(K)$ is the set of ground instances of $K, G(\mathcal{K})=\cup_{K \in \mathcal{X}} G(K)$

เ Lemma: $\operatorname{Res}_{n}(G(\mathcal{K}))=G\left(\operatorname{URes}_{n}(\mathcal{K})\right)$ and $\operatorname{Res}_{\omega}(G(\mathcal{K}))=G\left(\operatorname{URes}_{\omega}(\mathcal{K})\right)$

- Lemma: $\varnothing \in \operatorname{Res}_{\omega}(G(\mathcal{K}))$ iff $\varnothing \in \operatorname{URes}_{\omega}(\mathcal{K})$
- For Φ a set of \forall formulas in CNF: $G(\mathcal{K}(\Phi))=\mathcal{K}(\mathrm{G}(\Phi))$, where $\mathcal{K}(\Phi)$ is setrepresentation of CNF
- Theorem: For Φ a set of \forall formulas in CNF, Φ is Sat iff $\varnothing \notin \operatorname{URes} \omega(\mathcal{K}(\Phi))$
- Proof: Φ is Sat iff $\mathrm{G}(\Phi)$ is (propositionally) Sat iff $\mathcal{K}(\mathrm{G}(\Phi))$ is Sat iff $\mathrm{G}(\mathcal{K}(\Phi))$ is Sat iff $\varnothing \notin \operatorname{Res}_{\omega} \mathrm{G}(\mathcal{K}(\Phi))$ iff $\varnothing \notin \mathrm{URes}_{\omega} \mathcal{K}(\Phi)$

FOL Checking with Unification

-FO validity checker: Given FO ϕ, negate \& Skolemize to get universal ψ s.t. Valid (ϕ) iff UNSAT (ψ). Let G be the set of ground instances of ψ (possibly infinite, but countable). Let $G_{1}, G_{2} \ldots$, be a sequence of finite subsets of G s.t. $\forall g \subseteq G,|g|<\omega, \exists n$ s.t. $g \subseteq G_{n}$. If $\exists n$ s.t. Unsat G_{n}, then Unsat ψ and Valid ϕ

- Unification: intelligently instantiate formulas
- FO validity checker w/ unification: Given FO ϕ, negate \& Skolemize to get universal ψ s.t. Valid (ϕ) iff UNSAT (ψ). Convert ψ into equivalent CNF \mathcal{K}. Then, Unsat ψ iff $\varnothing \in \operatorname{URes}_{\omega}(\mathcal{K})$ iff $\exists n$ s.t. $\varnothing \in \operatorname{URes}_{n}(\mathcal{K})$.
- We say that U-resolution is refutation-compete: If Unsat (\mathcal{K}) then there is a proof using U-resolution (i.e., you can derive \varnothing), so we have a semidecision procedure for validity.

FOL Checking Examples

- FO validity checker w/ unification: Given FO ϕ, negate \& Skolemize to get universal ψ s.t. Valid (ϕ) iff UNSAT (ψ). Convert ψ into equivalent CNF \mathcal{K}. Then, Unsat (ψ) iff $\varnothing \in \operatorname{URes}_{\omega}(\mathcal{K})$ iff $\exists n$ s.t. $\varnothing \in \operatorname{URes}_{n}(\mathcal{K})$.

$$
\begin{aligned}
\phi & =\neg\langle\forall x, y(R(x, y) \vee Q(x)) \wedge \neg R(x, g(x)) \wedge \neg Q(y)\rangle \\
\psi & =\langle\forall x, y(R(x, y) \vee Q(x)) \wedge \neg R(x, g(x)) \wedge \neg Q(y)\rangle \\
\mathscr{K} & =\{\{R(x, y), Q(x)\},\{\neg R(x, g(x))\},\{\neg Q(y)\}\}
\end{aligned}
$$

$$
\{(R(x, y), \underbrace{Q(x)\}}_{\sigma=x} \stackrel{\{\neg Q(z)\}}{\sigma=z}
$$

Let C, D be clauses (w/ no common variables). K is a U-resolvent of C, D

$$
\sigma=x \leftarrow z, g(x) \leftarrow y \underbrace{\{(R(x, y)\}}_{\varnothing} \underbrace{\{\neg R(z, g(z))\}}
$$ iff there are non-empty $\underline{C^{\prime}} \subseteq C, \underline{D}^{\prime} \subseteq D$ s.t. σ is a unifier for $\underline{C}^{\prime} \cup \underline{D}^{\prime-}$ and $K=\left(C \backslash \underline{C} \cup D \backslash \underline{D}^{\prime}\right) \sigma$. Recall

So, Unsat (ψ) and $\operatorname{Valid}(\phi)$

Subsumption \& Replacement

Let C, D be propositional clauses; $C \leq D, C$ subsumes D if $C \subseteq D$, therefore $C \Rightarrow D$ and we can remove D and subsumed clauses

Let C, D be FO clauses; $C \leq D, C$ subsumes D if $\exists \sigma$ s.t. CoธD (matching!), hence $C \Rightarrow D$ and we so can remove D and subsumed clauses

* Theorem: For FO clauses, if $C \leq C^{\prime}$ and $D \leq D^{\prime}$ then any U-resolvent of C^{\prime} and D^{\prime} is subsumed by C, D or a U-resolvent of C and D.
* Corollary: If C is derivable by U-resolution, then $\exists C^{\prime}$ derivable by U resolution s.t. C' $\leq C$ and no clause is subsumed by any of its ancestors
- Corollary: If a U-resolution of a non-tautologous conclusion involves a tautology, ョ a U-resolution proof that does not use any tautologies
*So, we can discard tautologies and subsumed clauses
* Forward deletion: discard generated clauses that are subsumed by an existing clause
B Backward replacement: if a generated clause subsumes an existing clause replace the existing clause with the newly generated one

Positive, Semantic Resolution

- Positive resolution (Robinson): Refutation completeness is preserved if we restrict resolution so that one of the clauses contains only positive literals
- Hint: suppose that there are no positive clauses (all literals are positive), then the problem is SAT if you assign all atoms false; if there only positive clauses assign all atoms true; see proof in book
- Similarly for U-resolution
- This cuts down the search space dramatically
- This plays well with subsumption and replacement
- We could have required negative clauses (instead of positive clauses)
- More generally we have semantic resolution: if S is an Unsat set of FO clauses and $/$ is an interpretation of the symbols used in S, there is a U resolution proof of Unsat(S) where each U-resolution step involves a clause that is not true in /
* Positive resolution is a special case where I assigns false to all atoms

Set of Support

- Partition T the input clauses into two disjoint sets, S , the set of support of T and the unsupported clauses U. Restrict U-resolution so that no two clauses in U are resolved together.
- Theorem: Let T be an Unsat set of clauses and let S be a subset of T where $T \backslash S$ is Sat; then there is a U-resolution proof of Usat (T) with set of support S
- Idea: focus U-resolution on finding resolvents that contribute to the solution
- For example say A is a set of standard mathematical axioms
- You want to prove $B \Rightarrow C$
* Using U-resolution you will want to derive the empty clause from $A, B, \neg C$
- Since $\operatorname{Sat}(A)$ you can choose $B, \neg C$ as the set of support
- Since A, B are Sat (presumably), you can choose $\neg C$ as the set of support
- Suppose $\neg C$ is the only negative clause, then similar to negative resolution, but negative resolution is more restrictive; however, set of support often makes up for this by finding shorter proofs

