
Lecture 17

Pete Manolios

Northeastern

Computer-Aided Reasoning, Lecture 17

Slides by Pete Manolios for CS4820

Unification for FOL
Let C be a clause; if we negate all literals in C, we get C-

A unifier for a clause C={l1,…,ln} is a unifier for {(l1,l2), (l2, l3), …, (ln-1,ln)}

Let C, D be clauses (assume there are no common variables since we can
rename vars). K is a U-resolvent of C, D iff there are non-empty C’⊆C, D’⊆D
s.t. σ is a unifier for C’∪D’- and K=(C\C’ ∪ D\D’)σ. Note |C’|, |D’| can be >1

C = {¬R(x), R(f(x))} D = {¬R(f(f(x))), P(x)}
⟨∀x (¬R(x) ∨ R(f(x))) ∧ (¬R(f(f(x))) ∨ P(x))⟩
⟨∀x ¬R(x) ∨ R(f(x))⟩ ∧ ⟨∀x ¬R(f(f(x))) ∨ P(x)⟩
⟨∀x ¬R(x) ∨ R(f(x))⟩ ∧ ⟨∀y ¬R(f(f(y))) ∨ P(y)⟩

corresponds to
equivalent to
equivalent to
corresponds to

C = {¬R(x), R(f(x))} D = {¬R(f(f(y)) ∨ P(y)}
so I will rename variables in clauses as I see fit

⟨∀x :: ϕ⟩ ∧ ⟨∀y :: ψ⟩ ≡ ⟨∀z :: ϕ
z
x

∧ ψ
z
y

⟩ where z is not free in LHS
Recall from the Prenex Normal Form algorithm (let z,y be x in the example)

Slides by Pete Manolios for CS4820

U-resolvent example
Let C be a clause; if we negate all literals in C, we get C-

A unifier for a clause C={l1,…,ln} is a unifier for {(l1,l2), (l2, l3), …, (ln-1,ln)}

Let C, D be clauses (assume there are no common variables since we can
rename vars). K is a U-resolvent of C, D iff there are non-empty C’⊆C, D’⊆D
s.t. σ is a unifier for C’∪D’- and K=(C\C’ ∪ D\D’)σ. Note |C’|, |D’| can be >1

C = {¬R(x), R(f(x))} D = {¬R(f(f(x))), P(x)}

σ = f(y) ← x
{¬R(f(y)), P(y)}

{¬R(x), R(f(x))} {¬R(f(f(y))), P(y)}

Slides by Pete Manolios for CS4820

U-resolvent example
Let C be a clause; if we negate all literals in C, we get C-

A unifier for a clause C={l1,…,ln} is a unifier for {(l1,l2), (l2, l3), …, (ln-1,ln)}

Let C, D be clauses (assume there are no common variables since we can
rename vars). K is a U-resolvent of C, D iff there are non-empty C’⊆C, D’⊆D
s.t. σ is a unifier for C’∪D’- and K=(C\C’ ∪ D\D’)σ. Note |C’|, |D’| can be >1

Try this: C = {¬S(c, x), ¬S(x, x)}, D = {S(x, x), S(c, x)}

σ = x ← y
{¬S(x, x), S(x, x)}

{¬S(c, x), ¬S(x, x)} {S(c, y), S(y, y)}

Tautology, so useless

One possible U-resolution step

Slides by Pete Manolios for CS4820

U-resolvent example
Let C be a clause; if we negate all literals in C, we get C-

A unifier for a clause C={l1,…,ln} is a unifier for {(l1,l2), (l2, l3), …, (ln-1,ln)}

Let C, D be clauses (assume there are no common variables since we can
rename vars). K is a U-resolvent of C, D iff there are non-empty C’⊆C, D’⊆D
s.t. σ is a unifier for C’∪D’- and K=(C\C’ ∪ D\D’)σ. Note |C’|, |D’| can be >1

Try this: C = {¬S(c, x), ¬S(x, x)}, D = {S(x, x), S(c, x)}

σ = x ← y
{¬S(x, x), S(x, x)}

{¬S(c, x), ¬S(x, x)} {S(c, y), S(y, y)}

σ = c ← y, x

{¬S(c, c), S(c, c)}

{¬S(c, x), ¬S(x, x)} {S(c, y), S(y, y)}

All are tautologies

(useless)

{¬S(c, c), S(c, c)}

{¬S(c, x), ¬S(x, x)} {S(c, y), S(y, y)}

σ = c ← y, x

{¬S(c, x), S(c, x)}

{¬S(c, x), ¬S(x, x)} {S(c, y), S(y, y)}

σ = x ← y

Slides by Pete Manolios for CS4820

U-resolvent example
Let C be a clause; if we negate all literals in C, we get C-

A unifier for a clause C={l1,…,ln} is a unifier for {(l1,l2), (l2, l3), …, (ln-1,ln)}

Let C, D be clauses (assume there are no common variables since we can
rename vars). K is a U-resolvent of C, D iff there are non-empty C’⊆C, D’⊆D
s.t. σ is a unifier for C’∪D’- and K=(C\C’ ∪ D\D’)σ. Note |C’|, |D’| can be >1

Try this: C = {¬S(c, x), ¬S(x, x)}, D = {S(x, x), S(c, x)}

{S(c, c)}

{¬S(c, x), ¬S(x, x)} {S(c, y), S(y, y)}

{¬S(c, c)}

{¬S(c, x), ¬S(x, x)} {S(c, y), S(y, y)}

∅

σ = c ← y, xσ = c ← y, x

σ = ι the identity substitution

Slides by Pete Manolios for CS4820

U-resolvent example
Let C be a clause; if we negate all literals in C, we get C-

A unifier for a clause C={l1,…,ln} is a unifier for {(l1,l2), (l2, l3), …, (ln-1,ln)}

Let C, D be clauses (assume there are no common variables since we can
rename vars). K is a U-resolvent of C, D iff there are non-empty C’⊆C, D’⊆D
s.t. σ is a unifier for C’∪D’- and K=(C\C’ ∪ D\D’)σ. Note |C’|, |D’| can be >1

Try this: C = {¬S(c, x), ¬S(x, x)}, D = {S(x, x), S(c, x)}

∅

{¬S(c, x), ¬S(x, x)} {S(c, y), S(y, y)}

σ = c ← y, x

¬⟨∃b ⟨∀x S(b, x) ≡ ¬S(x, x)⟩⟩

This is the Barber of Seville problem: Prove that there is no barber who
shaves all those, and those only, who do not shave themselves.

Slides by Pete Manolios for CS4820

Unification for FOL
Let C be a clause; if we negate all literals in C, we get C-

A unifier for a clause C={l1,…,ln} is a unifier for {(l1,l2), (l2, l3), …, (ln-1,ln)}

Let C, D be clauses (assume there are no common variables since we can
rename vars). K is a U-resolvent of C, D iff there are non-empty C’⊆C, D’⊆D
s.t. σ is a unifier for C’∪D’- and K=(C\C’ ∪ D\D’)σ. Note |C’|, |D’| can be >1

Lemma: Let C, D be clauses. Then

every resolvent of ground instances of C, D is a ground instance of a U-
resolvent of C, D

every ground instance of a U-resolvent of C, D is a resolvent of ground
instances of C, D

Let 𝓚 be a set of ground clauses, Res(𝓚)=𝓚∪{K | K is a resolvent of C,D∈𝓚}

Let 𝓚 be a set of FO clauses, URes(𝓚)=𝓚∪{K | K is a U-resolvent of C,D∈𝓚}

Let URes0(𝓚)=𝓚, UResn+1(𝓚)=URes(UResn(𝓚)), UResω(𝓚)=∪n∈ωUResn(𝓚)

Slides by Pete Manolios for CS4820

Unification for FOL
Let C, D be clauses (assume there are no common variables since we can
rename vars). K is a U-resolvent of C, D iff there are non-empty C’⊆C, D’⊆D
s.t. σ is a unifier for C’∪D’- and K=(C\C’ ∪ D\D’)σ. Note |C’|, |D’| can be >1

G(K) is the set of ground instances of K, G(𝓚) = ∪K∈𝓚 G(K)

Lemma: Resn(G(𝓚)) = G(UResn(𝓚)) and Resω(G(𝓚)) = G(UResω(𝓚))

Lemma: ∅∈Resω(G(𝓚)) iff ∅∈UResω(𝓚)

For Φ a set of ∀ formulas in CNF: G(𝓚(Φ))=𝓚(G(Φ)), where 𝓚(Φ) is set-
representation of CNF

Theorem: For Φ a set of ∀ formulas in CNF, Φ is Sat iff ∅∉UResω(𝓚(Φ))

Proof: Φ is Sat iff G(Φ) is (propositionally) Sat iff 𝓚(G(Φ)) is Sat iff
G(𝓚(Φ)) is Sat iff ∅∉ResωG(𝓚(Φ)) iff ∅∉UResω𝓚(Φ)

Slides by Pete Manolios for CS4820

FOL Checking with Unification
FO validity checker: Given FO φ, negate & Skolemize to get universal ψ s.t.
Valid(φ) iff UNSAT(ψ). Let G be the set of ground instances of ψ (possibly
infinite, but countable). Let G1, G2 …, be a sequence of finite subsets of G
s.t. ∀g⊆G,|g|<ω, ∃n s.t. g⊆Gn. If ∃n s.t. Unsat Gn, then Unsat ψ and Valid φ

Unification: intelligently instantiate formulas

FO validity checker w/ unification: Given FO φ, negate & Skolemize to get
universal ψ s.t. Valid(φ) iff UNSAT(ψ). Convert ψ into equivalent CNF 𝓚.
Then, Unsat ψ iff ∅∈UResω(𝓚) iff ∃n s.t. ∅∈UResn(𝓚).

We say that U-resolution is refutation-compete: If Unsat(𝓚) then there is a
proof using U-resolution (i.e., you can derive ∅), so we have a semi-
decision procedure for validity.

Slides by Pete Manolios for CS4820

FOL Checking Examples
FO validity checker w/ unification: Given FO φ, negate & Skolemize to get
universal ψ s.t. Valid(φ) iff UNSAT(ψ). Convert ψ into equivalent CNF 𝓚.
Then, Unsat(ψ) iff ∅∈UResω(𝓚) iff ∃n s.t. ∅∈UResn(𝓚).

σ = x ← z

𝒦 = {{R(x, y), Q(x)}, {¬R(x, g(x))}, {¬Q(y)}}

{(R(x, y), Q(x)} {¬Q(z)}

{(R(x, y)} {¬R(z, g(z))}

∅

ϕ = ¬⟨∀x, y (R(x, y) ∨ Q(x)) ∧ ¬R(x, g(x)) ∧ ¬Q(y)⟩

σ = x ← z, g(x) ← y

Let C, D be clauses (w/ no common
variables). K is a U-resolvent of C, D
iff there are non-empty C’⊆C, D’⊆D
s.t. σ is a unifier for C’∪D’- and
K=(C\C’ ∪ D\D’)σ.

Recall

ψ = ⟨∀x, y (R(x, y) ∨ Q(x)) ∧ ¬R(x, g(x)) ∧ ¬Q(y)⟩

So, Unsat(ψ) and Valid(φ)

Slides by Pete Manolios for CS4820

Subsumption & Replacement
Let C, D be propositional clauses; C≤D, C subsumes D if C⊆D, therefore
C⇒D and we can remove D and subsumed clauses

Let C, D be FO clauses; C≤D, C subsumes D if ∃σ s.t. Cσ⊆D (matching!),
hence C⇒D and we so can remove D and subsumed clauses

Theorem: For FO clauses, if C≤C’ and D≤D’ then any U-resolvent of C’ and
D’ is subsumed by C, D or a U-resolvent of C and D.

Corollary: If C is derivable by U-resolution, then ∃C’ derivable by U-
resolution s.t. C’≤C and no clause is subsumed by any of its ancestors

Corollary: If a U-resolution of a non-tautologous conclusion involves a
tautology, ∃ a U-resolution proof that does not use any tautologies

So, we can discard tautologies and subsumed clauses

Forward deletion: discard generated clauses that are subsumed by an
existing clause

Backward replacement: if a generated clause subsumes an existing
clause replace the existing clause with the newly generated one

Slides by Pete Manolios for CS4820

Positive, Semantic Resolution
Positive resolution (Robinson): Refutation completeness is preserved if we
restrict resolution so that one of the clauses contains only positive literals

Hint: suppose that there are no positive clauses (all literals are positive),
then the problem is SAT if you assign all atoms false; if there only
positive clauses assign all atoms true; see proof in book

Similarly for U-resolution

This cuts down the search space dramatically

This plays well with subsumption and replacement

We could have required negative clauses (instead of positive clauses)

More generally we have semantic resolution: if S is an Unsat set of FO
clauses and I is an interpretation of the symbols used in S, there is a U-
resolution proof of Unsat(S) where each U-resolution step involves a clause
that is not true in I

Positive resolution is a special case where I assigns false to all atoms

Slides by Pete Manolios for CS4820

Set of Support
Partition T the input clauses into two disjoint sets, S, the set of support of T
and the unsupported clauses U. Restrict U-resolution so that no two
clauses in U are resolved together.

Theorem: Let T be an Unsat set of clauses and let S be a subset of T where
T\S is Sat; then there is a U-resolution proof of Usat(T) with set of support S

Idea: focus U-resolution on finding resolvents that contribute to the solution

For example say A is a set of standard mathematical axioms

You want to prove B⇒C

Using U-resolution you will want to derive the empty clause from A, B, ¬C

Since Sat(A) you can choose B, ¬C as the set of support

Since A, B are Sat (presumably), you can choose ¬C as the set of support

Suppose ¬C is the only negative clause, then similar to negative resolution,
but negative resolution is more restrictive; however, set of support often
makes up for this by finding shorter proofs

