Lecture 17

Pete Manolios
Northeastern

Computer-Aided Reasoning, Lecture 17

Unification for FOL

> Let C be a clause; if we negate all literals in C, we get C-
& A unifier for a clause C={/1,...,In} is a unifier for {(/1,l2), (I2, I3), ..., (Ir-1,In)}

> Let C, D be clauses (assume there are no common variables since we can
rename vars). K is a U-resolvent of C, D iff there are non-empty C’'cC, D’cD

s.t. o is a unifier for C’uD™ and K=(C\C’ U D\D’)o. Note |C’|, |D’| can be >1
C = {7Rx),R(f(x))} D= {=R(f(f(x))), P(x)} corresponds to

(Vx (=R@) VR(AX) A (~R(A(f(0)) v P(x)) equivalent to

(Vx =R(x) VR(fx)) A (¥x =R(f(f())V P(x)) equivalent to

(¥x =R() VR(f()) A (Yy “R(f(f(»)) V P(y)) corresponds to

C = {7Rx),R(f(x))} D= {=R(f(f(y)V P}

so | will rename variables in clauses as | see fit

Recall from the Prenex Normal Form algorithm (let z,y be x in the example)

(Vx)y AN(Vy:iy) = (Vz:: (pi /\://5) where 7z is not free in LHS
X Y

Slides by Pete Manolios for CS4820

U-resolvent example

> Let C be a clause; if we negate all literals in C, we get C-
& A unifier for a clause C={/1,...,In} is a unifier for {(/1,l2), (I2, I3), ..., (Ir-1,In)}

> Let C, D be clauses (assume there are no common variables since we can
rename vars). K is a U-resolvent of C, D iff there are non-empty C’'cC, D’cD

s.t. o is a unifier for C’uD™ and K=(C\C’ U D\D’)o. Note |C’|, |D’| can be >1

C={"Rx),R(f(x))} D= {-R(f(f(x))),P(x)}
{=R(x),R(f(x))} {~R((S()), P(y)}

N =) =

{7 R(f(y), P(y)}

Slides by Pete Manolios for CS4820

U-resolvent example

> Let C be a clause; if we negate all literals in C, we get C-
& A unifier for a clause C={/1,...,In} is a unifier for {(/1,l2), (I2, I3), ..., (Ir-1,In)}

> Let C, D be clauses (assume there are no common variables since we can
rename vars). K is a U-resolvent of C, D iff there are non-empty C’'cC, D’cD

s.t. o is a unifier for C’uD™ and K=(C\C’ U D\D’)o. Note |C’|, |D’| can be >1
e Try this: C = {=5(c, x), "S(x,x)}, D = {S(x,x),S(c, x)}

One possible U-resolution step

{28(c,x), 7S, x)} - 15(¢,), S(y,)}

\%zx(—y

{28(x, x), S(x, X))

Tautology, so useless

Slides by Pete Manolios for CS4820

U-resolvent example

> Let C be a clause; if we negate all literals in C, we get C-
& A unifier for a clause C={/1,...,In} is a unifier for {(/1,l2), (I2, I3), ..., (Ir-1,In)}

> Let C, D be clauses (assume there are no common variables since we can
rename vars). K is a U-resolvent of C, D iff there are non-empty C’'cC, D’cD

s.t. o is a unifier for C’uD™ and K=(C\C’ U D\D’)o. Note |C’|, |D’| can be >1
e Try this: C = {=5(c, x), "S(x,x)}, D = {S(x,x),S(c, x)}

{_|S(C,X), _lS(X,.X)} {S(C,y), S(y,y)} {_'S(C,X), _'S(X,X)} {S(C’y)aS(y’y)}

\%zxey \A:c@y,x

{=S(x, x), S(x, x)} {S8(c, 0),8(c,)}

{=8(c, %), =S, 0)} {S(c,y), S, {=8(c,x), 28,0} 15(6,¥), 50, 1))

\%C@y’x %&y

173(c,€), 3¢, 0)) All are tautologies t=5(e, %), 5, 0}

(useless)

Slides by Pete Manolios for CS4820

U-resolvent example

> Let C be a clause; if we negate all literals in C, we get C-
& A unifier for a clause C={/1,...,In} is a unifier for {(/1,l2), (I2, I3), ..., (Ir-1,In)}

> Let C, D be clauses (assume there are no common variables since we can
rename vars). K is a U-resolvent of C, D iff there are non-empty C’'cC, D’cD

s.t. o is a unifier for C’uD™ and K=(C\C’ U D\D’)o. Note |C’|, |D’| can be >1
e Try this: C = {=5(c, x), "S(x,x)}, D = {S(x,x),S(c, x)}
[=8(c,x),~S(x,x)} {S(c,y),8(>,y)} {78, x), 28, %)} {S(c,y), 50y, ¥)}

\%:C@y,x \A:c@y,x

15(c, 0)} 175(¢c, o)}
\Adentity substitution
%)

Slides by Pete Manolios for CS4820

U-resolvent example

> Let C be a clause; if we negate all literals in C, we get C-
& A unifier for a clause C={/1,...,In} is a unifier for {(/1,l2), (I2, I3), ..., (Ir-1,In)}

> Let C, D be clauses (assume there are no common variables since we can
rename vars). K is a U-resolvent of C, D iff there are non-empty C’'cC, D’cD

s.t. o is a unifier for C’uD™ and K=(C\C’ U D\D’)o. Note |C’|, |D’| can be >1
e Try this: C = {=5(c, x), "S(x,x)}, D = {S(x,x),S(c, x)}

{28(c, 1), 7S, x)} {5(c,), 5y, y) }

\/:cey,x

D

> This is the Barber of Seville problem: Prove that there is no barber who
shaves all those, and those only, who do not shave themselves.

=(3Ab (Vx S(b,x) = ~S(x,x)))

Slides by Pete Manolios for CS4820

Unification for FOL

> Let C be a clause; if we negate all literals in C, we get C-
> A unifier for a clause C={/1,...,In} is a unifier for {(/1,l2), (I2, I3), ..., (In-1,In)}

> Let C, D be clauses (assume there are no common variables since we can
rename vars). K is a U-resolvent of C, D iff there are non-empty C’cC, D’cD

s.t. o is a unifier for C’uD™ and K=(C\C’ U D\D’)o. Note |C’|, |D’| can be >1
» Lemma: Let C, D be clauses. Then

> every resolvent of ground instances of C, D is a ground instance of a U-
resolvent of C, D

> every ground instance of a U-resolvent of C, D is a resolvent of ground
instances of C, D

> Let K be a set of ground clauses, Res(X)= U{K | K is a resolvent of C,DeX}
> Let K be a set of FO clauses, URes(K)=X U{K | K is a U-resolvent of C,DeX}
> Let UReso(K)=%, UResn+1(K)=URes(UResn(¥X)), UResu(K)= U ncwUResn(K)

Slides by Pete Manolios for CS4820

Unification for FOL

> Let C, D be clauses (assume there are no common variables since we can
rename vars). K is a U-resolvent of C, D iff there are non-empty C’cC, D’cD

s.t. o is a unifier for C’uD’- and K=(C\C’ U D\D’)o. Note |C’|, |D’| can be >1
> G(K) is the set of ground instances of K, G(K) = U kex G(K)
> Lemma: Resn(G(K)) = G(UResn(¥)) and Resw(G(¥K)) = G(UResw(¥X))
» Lemma: @eResy(G(X)) iff acUResw(XK)

> For ®@ a set of v formulas in CNF: G(F(D))=K(G(D)), where K (D) is set-
representation of CNF

> Theorem: For ®@ a set of v formulas in CNF, @ is Sat iff @¢UResy(HK (D))

> Proof: @ is Sat iff G(®) is (propositionally) Sat iff Z(G(®D)) is Sat iff
G(K (D)) is Sat iff d¢ResuG(K (D)) iff deURes,K (D)

Slides by Pete Manolios for CS4820

FOL Checking with Unification

> FO validity checker: Given FO ¢, negate & Skolemize to get universal { s.t.
Valid(¢) iff UNSAT(). Let G be the set of ground instances of { (possibly
infinite, but countable). Let G1, G2 ..., be a sequence of finite subsets of G
s.t. vgC@G,|g|<w, 3n s.t. gcGn. If an s.t. Unsat G, then Unsat ¢ and Valid ¢

> Unification: intelligently instantiate formulas

> FO validity checker w/ unification: Given FO ¢, negate & Skolemize to get
universal P s.t. Valid(¢) iff UNSAT(). Convert ¢ into equivalent CNF XK.
Then, Unsat (iff @eUResy(K) iff an s.t. aeUResn(XK).

> We say that U-resolution is refutation-compete: If Unsat(¥) then there is a
proof using U-resolution (i.e., you can derive @), so we have a semi-

decision procedure for validity.

Slides by Pete Manolios for CS4820

FOL Checking Examples

> FO validity checker w/ unification: Given FO ¢, negate & Skolemize to get
universal P s.t. Valid(¢) iff UNSAT(). Convert ¢ into equivalent CNF XK.
Then, Unsat(y) iff deUResw(XK) iff an s.t. @eUResn(X).

¢ =(Vx,y (R(x,y) VO(X)) A =R(x, g(x)) A =QO())
w = (Vx,y (RCx,y)VOX) A =R(x,gx) A =0®D))
K = {{R(x,y), 0x)}, { "R(x, g(x))}, { -0} }

LR,), Q0) 1 20@) Let C, D be clauses (w/ ho common
C=X<7 variables). K is a U-resolvent of C, D
((R(E,)} {=R(z, 2(2))) iff there are non-empty C’cC, D’cD
s.t. o is a unifier for C’uD’- and
c=x«278x) <—y\/ K=(C\C’ U D\D’)a.
2 Recall

So, Unsat(y) and Valid(d)

Slides by Pete Manolios for CS4820

Subsumption & Replacement

> Let C, D be propositional clauses; C<D, C subsumes D if CcD, therefore
C=D and we can remove D and subsumed clauses

> Let C, D be FO clauses; C<D, C subsumes D if 30 s.t. CocD (matching!),
hence C=D and we so can remove D and subsumed clauses

» Theorem: For FO clauses, if C<C’ and D<D’ then any U-resolvent of C’ and
D’ is subsumed by C, D or a U-resolvent of C and D.

» Corollary: If C is derivable by U-resolution, then 3C’ derivable by U-
resolution s.t. C’<C and no clause is subsumed by any of its ancestors

> Corollary: If a U-resolution of a non-tautologous conclusion involves a
tautology, 3 a U-resolution proof that does not use any tautologies

» So, we can discard tautologies and subsumed clauses

> Forward deletion: discard generated clauses that are subsumed by an
existing clause

> Backward replacement: if a generated clause subsumes an existing
clause replace the existing clause with the newly generated one

Slides by Pete Manolios for CS4820

Positive, Semantic Resolution

> Positive resolution (Robinson): Refutation completeness is preserved if we
restrict resolution so that one of the clauses contains only positive literals

> Hint: suppose that there are no positive clauses (all literals are positive),
then the problem is SAT if you assign all atoms false; if there only
positive clauses assign all atoms true; see proof in book

> Similarly for U-resolution
> This cuts down the search space dramatically
> This plays well with subsumption and replacement
» We could have required negative clauses (instead of positive clauses)

> More generally we have semantic resolution: if S is an Unsat set of FO
clauses and / is an interpretation of the symbols used in S, there is a U-
resolution proof of Unsat(S) where each U-resolution step involves a clause
that is not true in /

> Positive resolution is a special case where | assigns false to all atoms

Slides by Pete Manolios for CS4820

Set of Support

> Partition T the input clauses into two disjoint sets, S, the set of support of T
and the unsupported clauses U. Restrict U-resolution so that no two
clauses in U are resolved together.

» Theorem: Let T be an Unsat set of clauses and let S be a subset of T where
T\S is Sat; then there is a U-resolution proof of Usat(7) with set of support S

» ldea: focus U-resolution on finding resolvents that contribute to the solution
> For example say A is a set of standard mathematical axioms

> You want to prove B=C

> Using U-resolution you will want to derive the empty clause from A, B, -C

> Since Sat(A) you can choose B, —C as the set of support

> Since A, B are Sat (presumably), you can choose —C as the set of support

» Suppose —C is the only negative clause, then similar to negative resolution,
but negative resolution is more restrictive; however, set of support often
makes up for this by finding shorter proofs

Slides by Pete Manolios for CS4820

