
Lecture 16

Pete Manolios

Northeastern

Computer-Aided Reasoning, Lecture 16

Slides by Pete Manolios for CS4820

Announcements

HWK due on Tuesday

Exams returned on Tuesday

Slides by Pete Manolios for CS4820

FOL Checking
FO validity checker: Given FO φ, negate & Skolemize to get universal ψ s.t.
Valid(φ) iff UNSAT(ψ). Let G be the set of ground instances of ψ (possibly
infinite, but countable). Let G1, G2 …, be a sequence of finite subsets of G
s.t. ∀g⊆G,|g|<ω, ∃n s.t. g⊆Gn. If ∃n s.t. Unsat Gn, then Unsat ψ and Valid φ

Question 1: SAT checking

Gilmore (1960): Maintain conjunction of instances so far in DNF, so SAT
checking is easy, but there is a blowup due to DNF

Davis Putnam (1960): Convert ψ to CNF, so adding new instances does
not lead to blowup

In general, any SAT solver can be used, eg, DPLL much better than DNF

Question 2: How should we generate Gi?

Gilmore: Instances over terms with at most 0, 1, … , functions

Any such “naive” method leads to lots of useless work, eg, the book has
code for minimizing instances and reductions can be drastic

Slides by Pete Manolios for CS4820

Unification
Better idea: intelligently instantiate formulas. Consider the clauses

{Q(g(u), y)}

Instead of blindly instantiating, use x=g(u), v=f(y) so that we can resolve
{P(x, f(y)) ∨ Q(x, y), ¬P(g(u), v)}

Now, resolution gives us
{P(g(u), f(y)) ∨ Q(g(u), y), ¬P(g(u), f(y))}

Much better than waiting for our enumeration to allow some resolutions

Unification: Given a set of pairs of terms S = {(s1,t1), …, (sn,tn)} a unifier of S
is a substitution σ such that si|σ = ti|σ

We want an algorithm that finds a most general unifier if it exists

σ is more general than τ, σ ≤ τ, iff τ = δ∘σ for some substitution δ

Notice that if σ is a unifier, so is τ∘σ

Similar to solving a set of simultaneous equations, e.g., find unifiers for

{(P(f(w), f(y)), P(x, f(g(u))), (P(x,u), P(v,g(v))} and {(x, f(y)), (y, g(x))}

Slides by Pete Manolios for CS4820

Using Unification
Assume we have a unification algorithm. How do we use it?

Consider DP. When we instantiate a set of clauses, say
{P(x, f(y)) ∨ Q(x, y), ¬P(g(u), v)} |σ , σ = {x ← g(u), u ← f(y)}
We obtain
{P(g(u), f(y)) ∨ Q(g(u), y), ¬P(g(u), f(y))}
The original clauses state
⟨∀x, y, u, v (P(x, f(y)) ∨ Q(x, y)) ∧ ¬P(g(u), v)⟩

⟨∀x, y P(x, f(y)) ∨ Q(x, y)⟩ ⇏ ⟨∀x, y P(x, f(y))⟩ ∨ ⟨∀x, y Q(x, y)⟩

The instantiated clauses are implied because they state

Notice that we are free to further instantiate the above instantiated clauses

In contrast, if we use DPLL and case split, then we have to be careful, e.g.,
if we first assume P(x,f(y)) and then Q(x,y), then in subsequent
instantiations, x and y have to be instantiated the same way because

⟨∀u, y (P(g(u), f(y)) ∨ Q(g(u), y)) ∧ ¬P(g(u), f(y))⟩

DP is local or bottom-up, whereas DPLL is global or top-down

Slides by Pete Manolios for CS4820

Unification Basics
Unification Problem: Given a set of pairs of terms S = {(s1,t1), …, (sn,tn)} a
unifier of S is a substitution σ such that si|σ = ti|σ (we’ll write siσ = tiσ)

U(S) is the set of all unifiers of S; notice that if σ is a unifier, so is τ∘σ

σ is more general than τ, σ ≤ τ, iff τ = δσ (δ∘σ) for some substitution δ

≤ is a preorder; let δ be the identify for reflexivity

transitivity: if σ ≤ τ, τ ≤ θ then τ = δσ, θ = γτ = γ(δσ) = (γδ)σ

σ ∼ τ iff σ ≤ τ, τ ≤ σ. Notice that if σ=x←y, τ =y←x, then σ ∼ τ

σ ∼ τ iff there is a renaming (bijection on Vars) θ s.t. σ = θτ

A most general unifier (mgu) is σ ∈ U(S) s.t. for all τ ∈ U(S), σ ≤ τ

What is an mgu for x=y? x←y? y←x? z←x, z←y? y←x, w←z, z←w?

A substitution is idempotent if σσ = σ (rules out last case above)

σ is idempotent iff Domain(σ) is disjoint from Vars(Range(σ))

If a unification problem has a solution, then it has an idempotent mgu

We want an algorithm that finds an mgu, if a unifier exists

Slides by Pete Manolios for CS4820

Unification Algorithm

S = {(x1,t1), …, (xn,tn)} is in solved form if the xi are distinct variables and don’t
occur in any of the ti. Then S↓= {t1←x1, …, tn ←xn}

If S is in solved form and σ∈U(S), then σ=σS↓ (σ, σS↓ agree on all vars)

If S is in solved form, then S↓ is an idempotent mgu

Algorithm: Nondeterministic transition system based on the following rules

Delete {t=t} ⊎ S ⟹ S

Decompose {f(t1, …, tn) = f(s1, …, sn)} ⊎ S ⟹ {t1=s1, …,tn=sn} ⋃ S

Orient {t=x} ⊎ S ⟹ {x=t} ⋃ S, if t is not a variable

Eliminate {x=t} ⊎ S ⟹ {x=t} ⋃ S|t←x, if x∈Vars(S) - Vars(t)

Unify(S) = apply rules nondeterministically; if solved return S↓, else fail

Try it with: {x=f(a), g(x,x)=g(x,y)}

useful way of thinking about algorithms: SMT/IMT

Slides by Pete Manolios for CS4820

Unification Algorithm
Algorithm: Nondeterministic transition system based on the following rules

Delete {t=t} ⊎ S ⟹ S

Decompose {f(t1, …, tn) = f(s1, …, sn)} ⊎ S ⟹ {t1=s1, …,tn=sn} ⋃ S

Orient {t=x} ⊎ S ⟹ {x=t} ⋃ S, if t is not a variable

Eliminate {x=t} ⊎ S ⟹ {x=t} ⋃ S|t←x, if x∈Vars(S) - Vars(t)

x=f(a), g(x,x)=g(x,y)
x=f(a), x=x, x=y

x=f(a), x=y

x=f(a), f(a)=y

x=f(a), y=f(a)

can’t use eliminate on x=x; why?
can’t use orient on x=y; why?

what other rules can I use?⟹ decompose
⟹ delete

⟹ eliminate x

⟹ orient

⟹ return S↓

Slides by Pete Manolios for CS4820

Unification Algorithm Termination
Algorithm: Nondeterministic transition system based on the following rules

Delete {t=t} ⊎ S ⟹ S

Decompose {f(t1, …, tn) = f(s1, …, sn)} ⊎ S ⟹ {t1=s1, …,tn=sn} ⋃ S

Orient {t=x} ⊎ S ⟹ {x=t} ⋃ S, if t is not a variable

Eliminate {x=t} ⊎ S ⟹ {x=t} ⋃ S|t←x, if x∈Vars(S) - Vars(t)

Termination: our measure function will be on ordinals (infinite numbers)

0,1, 2, …, ω the first infinite ordinal (why stop with the naturals?)

Keep going:

Lexicographic ordering on tuples of natural numbers is ≈ ωω

⟨x0, …, xn-1, xn⟩ ⟼ ωnx0 + ⋯ + ωxn-1 + xn

There is an order-preserving bijection from n+1-tuples of Nats to ωn

There is a theorem of this in the ACL2 ordinals books; you can define a
relation, prove it is well-founded and use it in termination proofs

ω+1, ω+2, …, ω+ω = ω2, ω2+1, …, ω3, …, ωω = ω2,
…, ω3, …, ωω, …, ωωω…

= ϵ0 ACL2s measures can use ordinals

Slides by Pete Manolios for CS4820

Unification Algorithm Termination
Algorithm: Nondeterministic transition system based on the following rules

Delete {t=t} ⊎ S ⟹ S

Decompose {f(t1, …, tn) = f(s1, …, sn)} ⊎ S ⟹ {t1=s1, …,tn=sn} ⋃ S

Orient {t=x} ⊎ S ⟹ {x=t} ⋃ S, if t is not a variable

Eliminate {x=t} ⊎ S ⟹ {x=t} ⋃ S|t←x, if x∈Vars(S) - Vars(t)

Termination: our measure function will be on ordinals (infinite numbers)

x is solved in S iff x=t ∈ S and x only appears once in S

Measure: ⟨vars in S not solved, size of S, # of equations t=x in S⟩

Delete

Decompose

Orient

Eliminate

≤

≤

≤

<

<

<

=
 <

for every rule we have (≤ | =)*<, so the lexicographic order is decreasing

(and well-founded), i.e., any algorithm based on these rules terminates

why not =? Maybe x∈t, x∉S

Slides by Pete Manolios for CS4820

Unification Algorithm Soundness
Algorithm: Nondeterministic transition system based on the following rules

Delete {t=t} ⊎ S ⟹ S

Decompose {f(t1, …, tn) = f(s1, …, sn)} ⊎ S ⟹ {t1=s1, …,tn=sn} ⋃ S

Orient {t=x} ⊎ S ⟹ {x=t} ⋃ S, if t is not a variable

Eliminate {x=t} ⊎ S ⟹ {x=t} ⋃ S|t←x, if x∈Vars(S) - Vars(t)

If V ⟹ T then U(V)=U(T): Easy: delete, decompose, orient; for eliminate:

let σ∈U(V), θ=t←x. By lemma, σ=σθ if xσ=tσ, since x=t is in solved form

lemma: If X is in solved form then σ=σX↓ for all σ∈U(X)

Proof: σ, σX↓ agree on all vars by case analysis on y∈Domain(X↓)

σ∈U({x=t}⊎S) iff xσ=tσ ⋀ σ∈U(S) iff xσ=tσ ⋀ σθ∈U(S) iff xσ=tσ ⋀ σ∈U(Sθ) iff
σ∈U({x=t} ⋃ Sθ)

Soundness: If Unify returns σ, then σ is an idempotent mgu of S

Slides by Pete Manolios for CS4820

Unification Algorithm Completeness
Algorithm: Nondeterministic transition system based on the following rules

Delete {t=t} ⊎ S ⟹ S

Decompose {f(t1, …, tn) = f(s1, …, sn)} ⊎ S ⟹ {t1=s1, …,tn=sn} ⋃ S

Orient {t=x} ⊎ S ⟹ {x=t} ⋃ S, if t is not a variable

Eliminate {x=t} ⊎ S ⟹ {x=t} ⋃ S|t←x, if x∈Vars(S) - Vars(t)

Completeness: If S is solvable, then Unify(S) does not fail

Lemmas

f(…) = g(…) has no solution if f ≠ g

x=t, where x≠ t and x∈Vars(t) has no solution (|xσ| < |tσ| for all σ)

Proof: If S is solvable and in normal form wrt ⟹, then S is in solved form. S
cannot contain pairs of form f(…) = f(…) (decompose) or f(…) = g(…)
(lemma) or x=x (delete) or t=x where t is not a var (orient), so all equations
are of form x=t where x ∉ Vars(t) (lemma). Also x cannot occur twice in S
(eliminate), so S is in solved form.

Slides by Pete Manolios for CS4820

Unification Algorithm Improvements
Algorithm: Nondeterministic transition system based on the following rules

Delete {t=t} ⊎ S ⟹ S

Decompose {f(t1, …, tn) = f(s1, …, sn)} ⊎ S ⟹ {t1=s1, …,tn=sn} ⋃ S

Orient {t=x} ⊎ S ⟹ {x=t} ⋃ S, if t is not a variable

Eliminate {x=t} ⊎ S ⟹ {x=t} ⋃ S|t←x, if x∈Vars(S) - Vars(t)

Clash {f(t1, …, tn) = g(s1, …, sm)} ⊎ S ⟹ ⊥ if f ≠ g
Occurs-Check {x=t} ⊎ S ⟹ ⊥ if x∈Vars(t) ⋀ x ≠ t

This is justified by the lemmas used for completeness

f(…) = g(…) has no solution if f ≠ g

x=t, where x≠ t and x∈Vars(t) has no solution (|xσ| < |tσ| for all σ)

Early termination when ∃ no solution, saving (how much?) time

Slides by Pete Manolios for CS4820

Complexity of Unification
Algorithm: Nondeterministic transition system based on the following rules

Delete {t=t} ⊎ S ⟹ S

Decompose {f(t1, …, tn) = f(s1, …, sn)} ⊎ S ⟹ {t1=s1, …,sn=tn} U S

Orient {t=x} ⊎ S ⟹ {x=t} U S, if t is not a variable

Eliminate {x=t} ⊎ S ⟹ {x=t} U S|t←x, if x∈Vars(S) - Vars(t)

Exponential blow up: {(x1=f(x0,x0)), x2=f(x1,x1), x3=f(x2,x2), …, xn=f(xn-1,xn-1)}

Notice that the output is exponential

Can we do better?

Yes, by using a dag to represent terms and returning a dag

General idea: operate on a concise representation of problem

BDDs are concise representations of truth tables, decision trees, etc

Model checking searches an implicitly given graph (transition system)

Slides by Pete Manolios for CS4820

History of Unification
What we have studied is syntactic, first-order unification

syntactic: substitutions should make terms syntactically equal

equational unification: unification modulo an equational theory

eg for commutative f, f(x,f(x,x)) = f(f(x,x),x) is E-unifiable not syntactically unifiable

first-order: no higher-order variables (no variables ranging over functions)

Herbrand gave a nondeterministic algorithm in his 1930 thesis

Robinson (1965) introduced FO theorem proving using resolution, unification

Required exponential time & space

Robinson (1971) & Boyer-Moore (1972): structure sharing algorithms that were space
efficient, but required exponential time

Venturini-Zilli (1975): reduction to quadratic time using marking scheme

Huet (1976) worked on higher-order unification led to nα(n) time: almost linear
Robinson also discovered this algorithm

Paterson and Wegman (1976) linear time algorithm

Martelli and Montanari (1976) linear time algorithm based on Boyer-Moore

Slides by Pete Manolios for CS4820

Unification Applications
First-order theorem proving

Matching (ACL2) is a special case: given s,t find σ s.t. sσ=t

Prolog

Higher-order theorem proving

Undecidable for second-order logic

Natural language processing

Unification-based grammars

Equational theories

Commutative, Associative, Distributative, etc

Term rewrite systems

Type inference (eg ML)

Logic programming

Machine learning: generalization is a dual of unification

