Lecture 16

Pete Manolios Northeastern

Computer-Aided Reasoning, Lecture 16

Announcements

- HWK due on Tuesday
- Exams returned on Tuesday

FOL Checking

- FO validity checker: Given FO φ, negate & Skolemize to get universal ψ s.t. Valid(φ) iff UNSAT(ψ). Let G be the set of ground instances of ψ (possibly infinite, but countable). Let G₁, G₂ ..., be a sequence of finite subsets of G s.t. ∀g⊆G, |g|<ω, ∃n s.t. g⊆G_n. If ∃n s.t. Unsat G_n, then Unsat ψ and Valid φ
- Question 1: SAT checking
 - Gilmore (1960): Maintain conjunction of instances so far in DNF, so SAT checking is easy, but there is a blowup due to DNF
 - Davis Putnam (1960): Convert ψ to CNF, so adding new instances does not lead to blowup
 - ▶ In general, any SAT solver can be used, eg, DPLL much better than DNF
- Question 2: How should we generate G_i?
 - ▶ Gilmore: Instances over terms with at most 0, 1, ..., functions
 - Any such "naive" method leads to lots of useless work, eg, the book has code for minimizing instances and reductions can be drastic

Unification

- ▶ Better idea: intelligently instantiate formulas. Consider the clauses $\{P(x, f(y)) \lor Q(x, y), \neg P(g(u), v)\}$
- ▶ Instead of blindly instantiating, use x=g(u), v=f(y) so that we can resolve { $P(g(u), f(y)) \lor Q(g(u), y), \neg P(g(u), f(y))$ }
- Now, resolution gives us {Q(g(u), y)}
- Much better than waiting for our enumeration to allow some resolutions
- ▶ Unification: Given a set of pairs of terms $S = \{(s_1,t_1), ..., (s_n,t_n)\}$ a *unifier* of S is a substitution σ such that $s_i | \sigma = t_i | \sigma$
- ▶ We want an algorithm that finds a most general unifier if it exists
 - ▶ σ is *more general* than τ , $\sigma \leq \tau$, iff $\tau = \delta \circ \sigma$ for some substitution δ
 - ▶ Notice that if σ is a unifier, so is $\tau \circ \sigma$
- Similar to solving a set of simultaneous equations, e.g., find unifiers for

Using Unification

- Assume we have a unification algorithm. How do we use it?
- ▶ Consider DP. When we instantiate a set of clauses, say $\{P(x, f(y)) \lor Q(x, y), \neg P(g(u), v)\}|_{\sigma}, \quad \sigma = \{x \leftarrow g(u), u \leftarrow f(y)\}$
- We obtain
 - $\{P(g(u), f(y)) \lor Q(g(u), y), \neg P(g(u), f(y))\}$
- The original clauses state

 $\langle \forall x, y, u, v \ (P(x, f(y)) \lor Q(x, y)) \land \neg P(g(u), v) \rangle$

- ▶ The instantiated clauses are implied because they state $\langle \forall u, y \ (P(g(u), f(y)) \lor Q(g(u), y)) \land \neg P(g(u), f(y)) \rangle$
- Notice that we are free to further instantiate the above instantiated clauses
- ▶ In contrast, if we use DPLL and case split, then we have to be careful, e.g., if we first assume P(x,f(y)) and then Q(x,y), then in subsequent instantiations, *x* and *y* have to be instantiated the same way because $\langle \forall x, y \ P(x, f(y)) \lor Q(x, y) \rangle \Rightarrow \langle \forall x, y \ P(x, f(y)) \rangle \lor \langle \forall x, y \ Q(x, y) \rangle$
- ▶ DP is *local* or *bottom-up*, whereas DPLL is *global* or *top-down*

Unification Basics

- ▶ Unification Problem: Given a set of pairs of terms $S = \{(s_1, t_1), ..., (s_n, t_n)\}$ a *unifier* of *S* is a substitution σ such that $s_i | \sigma = t_i | \sigma$ (we'll write $s_i \sigma = t_i \sigma$)
- ▶ U(S) is the set of all unifiers of *S*; notice that if σ is a unifier, so is $\tau \circ \sigma$
- ▶ σ is more general than τ , $\sigma \leq \tau$, iff $\tau = \delta \sigma$ ($\delta \circ \sigma$) for some substitution δ
- ▷ ≤ is a preorder; let δ be the identify for reflexivity
 - ▶ transitivity: if $\sigma \leq \tau$, $\tau \leq \theta$ then $\tau = \delta \sigma$, $\theta = \gamma \tau = \gamma(\delta \sigma) = (\gamma \delta) \sigma$
 - ▷ $\sigma \sim \tau$ iff $\sigma \leq \tau$, $\tau \leq \sigma$. Notice that if $\sigma = x \leftarrow y$, $\tau = y \leftarrow x$, then $\sigma \sim \tau$
 - ▷ $\sigma \sim \tau$ iff there is a *renaming* (bijection on Vars) θ s.t. $\sigma = \theta \tau$
- A most general unifier (mgu) is $\sigma \in U(S)$ s.t. for all $\tau \in U(S)$, $\sigma \leq \tau$

▶ What is an mgu for $x=y? x \leftarrow y? y \leftarrow x? z \leftarrow x, z \leftarrow y? y \leftarrow x, w \leftarrow z, z \leftarrow w?$

- A substitution is *idempotent* if $\sigma\sigma = \sigma$ (rules out last case above)
 - $\triangleright \sigma$ is idempotent iff Domain(σ) is disjoint from Vars(Range(σ))
- ▶ If a unification problem has a solution, then it has an idempotent mgu
- ▶ We want an algorithm that finds an mgu, if a unifier exists

Unification Algorithm

- ▷ $S = \{(x_1, t_1), ..., (x_n, t_n)\}$ is in solved form if the x_i are distinct variables and don't occur in any of the t_i . Then $S \downarrow = \{t_1 \leftarrow x_1, ..., t_n \leftarrow x_n\}$
- ▶ If S is in solved form and $\sigma \in U(S)$, then $\sigma = \sigma S \downarrow (\sigma, \sigma S \downarrow \text{ agree on all vars})$
- ▶ If S is in solved form, then $S\downarrow$ is an idempotent mgu
- Algorithm: Nondeterministic transition system based on the following rules
 - ▶ Delete $\{t=t\} \cup S \implies S$ useful way of thinking about algorithms: SMT/IMT
 - ▶ Decompose { $f(t_1, ..., t_n) = f(s_1, ..., s_n)$ } ⊎ S ⇒ { $t_1=s_1, ..., t_n=s_n$ } ∪ S
 - ▶ Orient $\{t=x\} \cup S \implies \{x=t\} \cup S$, if *t* is not a variable
 - ▶ Eliminate $\{x=t\} \cup S \implies \{x=t\} \cup S | t \leftarrow x$, if $x \in Vars(S) Vars(t)$

Unify(S) = apply rules nondeterministically; if solved return S↓, else fail
Try it with: {*x*=*f*(*a*), *g*(*x*,*x*)=*g*(*x*,*y*)}

Unification Algorithm

Algorithm: Nondeterministic transition system based on the following rules

- ▶ Delete $\{t=t\} \ ⊎ \ S \implies S$
- ▷ Decompose { $f(t_1, ..., t_n) = f(s_1, ..., s_n)$ } $⊎ S \implies {t_1=s_1, ..., t_n=s_n} \cup S$
- ▶ Orient $\{t=x\} \cup S \implies \{x=t\} \cup S$, if *t* is not a variable
- ▶ Eliminate $\{x=t\} \cup S \implies \{x=t\} \cup S | t \leftarrow x$, if $x \in Vars(S) Vars(t)$

x = f(a), g(x,x) = g(x,y)	\Rightarrow decompose	what other rules can I use?
<i>x=f(a), x=x, x=y</i>	\Rightarrow delete	can't use eliminate on <i>x=x</i> ; why?
<i>x=f(a)</i> , <i>x=y</i>	\Rightarrow eliminate x	can't use orient on <i>x=y</i> ; why?
x=f(a), f(a)=y	\Rightarrow orient	
<i>x=f(a)</i> , <i>y=f(a)</i>	\Rightarrow return S↓	

Unification Algorithm Termination

Algorithm: Nondeterministic transition system based on the following rules

- ▶ Delete $\{t=t\} \ ⊎ \ S \implies S$
- ▶ Decompose { $f(t_1, ..., t_n) = f(s_1, ..., s_n)$ } ⊎ S ⇒ { $t_1=s_1, ..., t_n=s_n$ } ∪ S
- ▶ Orient $\{t=x\}$ ⊎ S $⇒ \{x=t\}$ ∪ S, if t is not a variable
- ▶ Eliminate $\{x=t\} \cup S \implies \{x=t\} \cup S | t \leftarrow x$, if $x \in Vars(S) Vars(t)$
- Termination: our measure function will be on ordinals (infinite numbers)
 - ▶ 0,1, 2, ..., ω the first infinite ordinal (why stop with the naturals?) ▶ Keep going: $\omega + 1$, $\omega + 2$, ..., $\omega + \omega = \omega 2$, $\omega 2 + 1$, ..., $\omega 3$, ..., $\omega \omega = \omega^2$,

..., ω^3 , ..., ω^{ω} , ..., $\omega^{\omega^{\omega^{\cdots}}} = \epsilon_0$ ACL2s measures can use ordinals

- \blacktriangleright Lexicographic ordering on tuples of natural numbers is $\approx \omega^{\omega}$
 - $\triangleright \langle X_0, \, \dots, \, X_{n-1}, \, X_n \rangle \longmapsto \omega^n X_0 + \cdots + \omega X_{n-1} + X_n$
 - ▶ There is an order-preserving bijection from n+1-tuples of Nats to ω^n
 - There is a theorem of this in the ACL2 ordinals books; you can define a relation, prove it is well-founded and use it in termination proofs

Unification Algorithm Termination

Algorithm: Nondeterministic transition system based on the following rules

- ▶ Delete $\{t=t\} \cup S \implies S$
- ▷ Decompose { $f(t_1, ..., t_n) = f(s_1, ..., s_n)$ } $⊎ S \implies {t_1=s_1, ..., t_n=s_n} \cup S$
- ▶ Orient $\{t=x\} \cup S \implies \{x=t\} \cup S$, if *t* is not a variable
- ▶ Eliminate $\{x=t\} \cup S \implies \{x=t\} \cup S | t \leftarrow x$, if $x \in Vars(S) Vars(t)$
- Termination: our measure function will be on ordinals (infinite numbers)
 - ▶ x is solved in S iff $x=t \in S$ and x only appears once in S

Measure:	<pre>vars in S not solved, si</pre>	ze of	f S, # of equations t=x in S>
▶ Delete	≤ why not =?	<	Maybe <i>x</i> ∈ <i>t</i> , <i>x</i> ∉S
Decompose	\leq	<	
Orient	\leq	=	<
Eliminate	<		

for every rule we have $(\leq | =)^* <$, so the lexicographic order is decreasing (and well-founded), i.e., any algorithm based on these rules terminates

Unification Algorithm Soundness

Algorithm: Nondeterministic transition system based on the following rules

- ▶ Delete $\{t=t\} \cup S \implies S$
- ▷ Decompose { $f(t_1, ..., t_n) = f(s_1, ..., s_n)$ } $⊎ S \implies {t_1=s_1, ..., t_n=s_n} \cup S$
- ▶ Orient $\{t=x\}$ ⊎ S $⇒ \{x=t\}$ ∪ S, if *t* is not a variable
- ▶ Eliminate $\{x=t\} \cup S \implies \{x=t\} \cup S | t \leftarrow x$, if $x \in Vars(S) Vars(t)$

▶ If $V \Rightarrow T$ then U(V)=U(T): Easy: delete, decompose, orient; for eliminate:

- ▶ let $\sigma \in U(V)$, $\theta = t \leftarrow x$. By lemma, $\sigma = \sigma \theta$ if $x\sigma = t\sigma$, since x = t is in solved form
 - ▶ lemma: If *X* is in solved form then $\sigma = \sigma X \downarrow$ for all $\sigma \in U(X)$

▶ Proof: σ , $\sigma X \downarrow$ agree on all vars by case analysis on $y \in \text{Domain}(X \downarrow)$

- ▶ $\sigma \in U({x=t} \cup S)$ iff $x\sigma = t\sigma \land \sigma \in U(S)$ iff $x\sigma = t\sigma \land \sigma \in U(S)$ iff $x\sigma = t\sigma \land \sigma \in U(S\theta)$ iff $\sigma \in U({x=t} \cup S\theta)$
- Soundness: If Unify returns σ , then σ is an idempotent mgu of *S*

Unification Algorithm Completeness

Algorithm: Nondeterministic transition system based on the following rules

- ▶ Delete $\{t=t\} \ ⊎ \ S \implies S$
- ▷ Decompose { $f(t_1, ..., t_n) = f(s_1, ..., s_n)$ } $⊎ S \implies {t_1=s_1, ..., t_n=s_n} \cup S$
- ▶ Orient $\{t=x\}$ ⊎ S $⇒ \{x=t\}$ ∪ S, if *t* is not a variable
- ▶ Eliminate $\{x=t\} \cup S \implies \{x=t\} \cup S | t \leftarrow x$, if $x \in Vars(S) Vars(t)$
- Completeness: If S is solvable, then Unify(S) does not fail

Lemmas

- ▶ f(...) = g(...) has no solution if $f \neq g$
- ▶ x=t, where $x \neq t$ and $x \in Vars(t)$ has no solution ($|x\sigma| < |t\sigma|$ for all σ)
- Proof: If S is solvable and in normal form wrt ⇒, then S is in solved form. S cannot contain pairs of form f(...) = f(...) (decompose) or f(...) = g(...) (lemma) or x=x (delete) or t=x where t is not a var (orient), so all equations are of form x=t where x ∉ Vars(t) (lemma). Also x cannot occur twice in S (eliminate), so S is in solved form.

Unification Algorithm Improvements

Algorithm: Nondeterministic transition system based on the following rules

- ▶ Delete $\{t=t\} \cup S \implies S$
- ▷ Decompose { $f(t_1, ..., t_n) = f(s_1, ..., s_n)$ } $⊎ S \implies {t_1=s_1, ..., t_n=s_n} \cup S$
- ▷ Orient $\{t=x\} \cup S \implies \{x=t\} \cup S$, if *t* is not a variable
- ▶ Eliminate $\{x=t\} \cup S \implies \{x=t\} \cup S | t \leftarrow x$, if $x \in Vars(S) Vars(t)$
- ▷ Clash { $f(t_1, ..., t_n) = g(s_1, ..., s_m)$ } ⊎ S ⇒ ⊥ if $f \neq g$
- ▷ Occurs-Check {x=t} ⊎ S $\Rightarrow \bot$ if $x \in Vars(t) \land x \neq t$
- This is justified by the lemmas used for completeness

▶ f(...) = g(...) has no solution if $f \neq g$

▶ x=t, where $x \neq t$ and $x \in Vars(t)$ has no solution ($|x\sigma| < |t\sigma|$ for all σ)

▶ Early termination when ∃ no solution, saving (how much?) time

Complexity of Unification

Algorithm: Nondeterministic transition system based on the following rules

- ▶ Delete $\{t=t\} \ ⊎ \ S \implies S$
- ▶ Decompose { $f(t_1, ..., t_n) = f(s_1, ..., s_n)$ } ⊎ S ⇒ { $t_1=s_1, ..., s_n=t_n$ } U S
- ▷ Orient $\{t=x\} \cup S \implies \{x=t\} \cup S$, if *t* is not a variable
- ▶ Eliminate $\{x=t\} \cup S \implies \{x=t\} \cup S | t \leftarrow x$, if $x \in Vars(S) Vars(t)$
- ▶ Exponential blow up: {($x_1 = f(x_0, x_0)$), $x_2 = f(x_1, x_1)$, $x_3 = f(x_2, x_2)$, ..., $x_n = f(x_{n-1}, x_{n-1})$ }
- Notice that the output is exponential
- Can we do better?
 - Yes, by using a dag to represent terms and returning a dag
 - General idea: operate on a concise representation of problem
 - BDDs are concise representations of truth tables, decision trees, etc
 - Model checking searches an implicitly given graph (transition system)

History of Unification

▶ What we have studied is syntactic, first-order unification

- syntactic: substitutions should make terms syntactically equal
- equational unification: unification modulo an equational theory

▶ eg for commutative f, f(x,f(x,x)) = f(f(x,x),x) is E-unifiable not syntactically unifiable

- first-order: no higher-order variables (no variables ranging over functions)
- Herbrand gave a nondeterministic algorithm in his 1930 thesis
- Robinson (1965) introduced FO theorem proving using resolution, unification
 - Required exponential time & space
- Robinson (1971) & Boyer-Moore (1972): structure sharing algorithms that were space efficient, but required exponential time
- Venturini-Zilli (1975): reduction to quadratic time using marking scheme
- Huet (1976) worked on higher-order unification led to na(n) time: almost linear Robinson also discovered this algorithm
- Paterson and Wegman (1976) linear time algorithm
- Martelli and Montanari (1976) linear time algorithm based on Boyer-Moore

Unification Applications

- First-order theorem proving
 - ▶ Matching (ACL2) is a special case: given s,t find σ s.t. $s\sigma=t$
- Prolog
- Higher-order theorem proving
 - Undecidable for second-order logic
- Natural language processing
- Unification-based grammars
- Equational theories
 - Commutative, Associative, Distributative, etc
 - Term rewrite systems
- ▶ Type inference (eg ML)
- Logic programming
- Machine learning: generalization is a dual of unification