Lecture 15

Pete Manolios Northeastern

Computer-Aided Reasoning, Lecture 15

Project Presentations

Slides by Pete Manolios for CS4820

Reduction to Propositional SAT

- ▶ We reduced FOL SAT to SAT of the universal fragment
- We now go one step further ground: quantifier/variable free
 Theorem: A universal FO formula (w/out =) is SAT iff all finite sets of ground instances are (propositionally) SAT (eg *P*(*x*) ∨ ¬*P*(*x*) is propositionally SAT)
- Corollary: A universal FO formula (w/out =) is UNSAT iff some finite set of ground instances is (propositionally) UNSAT
- FO validity checker: Given FO φ, negate & Skolemize to get universal ψ s.t. Valid(φ) iff UNSAT(ψ). Let G be the set of ground instances of ψ (possibly infinite, but countable). Let G₁, G₂ ..., be a sequence of finite subsets of G s.t. ∀g⊆G, |g|<ω, ∃n s.t. g⊆G_n. If ∃n s.t. Unsat G_n, then Unsat ψ and Valid φ
- The SAT checking is done via a propositional SAT solver!
- If φ is not valid, the checker may never terminate, i.e., we have a semidecision procedure and we'll see that's all we can hope for
- How should we generate G_i? One idea is to generate all instances over terms with at most 0, 1, ..., functions. We'll explore that more later.

Example

 $\langle \exists x \langle \forall y \ P(x) \Rightarrow P(y) \rangle \rangle$ is Valid iff $\langle \forall x \langle \exists y \ P(x) \land \neg P(y) \rangle \rangle$ is UNSAT iff $\langle \forall x \ P(x) \land \neg P(f_y(x)) \rangle$ is UNSAT

- Herbrand universe of FO language L is the set of all ground terms of L, except that if L has no constants, we add c to make the universe non-empty.
- For our example we have $H = \{c, f_y(c), f_y(f_y(c)), \ldots\}$
- ▷ So $G = \{P(t) \land \neg P(f_y(t)) \mid t \in H\}$
- ▶ Notice that $\Delta = \{P(c) \land \neg P(f_y(c)), P(f_y(c)) \land \neg P(f_y(f_y(c)))\}$ is UNSAT

▶ the SAT solver will report UNSAT for: $P(c) \land \neg P(f_y(c)) \land P(f_y(c)) \land \neg P(f_y(f_y(c)))$

So, for the first G_i that has both $\neg P(f_y(c))$ and $P(f_y(c))$ will lead to termination

- BTW, why do we restrict ourselves to FO w/out equality?
 - Consider $P(c) \land \neg P(d) \land c=d$
 - ► H = {c,d}

▷ $G = \{P(c) \land \neg P(d) \land c=d\}$, which is propositionally SAT, but FO UNSAT

Propositional Compactness

- ▶ A set Γ of propositional formulas is SAT iff every finite subset is SAT
- This is a key theorem justifying the correctness of our FO validity checker
- Proof: Ping is easy. Let *p*₁, *p*₂, ..., be an enumeration of the atoms (assume the set of atoms is countable). Define Δ_i as follows

$$\triangleright \Delta_0 = \Gamma$$

- ▷ $\Delta_{n+1} = \Delta_n \cup \{p_{n+1}\}$ if this is finitely SAT
- $\triangleright \Delta_{n+1} = \Delta_n \cup \{\neg p_{n+1}\}$ otherwise

Note: for all *i*, Δ_i is finitely SAT as is $\Delta = \cup_i \Delta_i$ (any finite subset is in some Δ_i) Here is an assignment for Γ : $v(p_i) = \text{true iff } p_i \in \Delta$

Herbrand Interpretations

- ▶ Let ψ be a universal FO formula w/out equality
- ▶ Let H be the Herbrand universe (all terms in language of ψ , as before)
- If G (all ground instances of ψ) is propositionally UNSAT then ψ is UNSAT (universal formulas imply all their instances)
- ▶ If G is propositionally SAT, say with assignment v, then ψ is SAT
 - ▶ Let \mathcal{J} be a canonical interpretation where the universe is H and
 - ▷ constants are interpreted autonomously: a(c) = c
 - ▶ functions are interpreted autonomously: $a(f t_1 ... t_n) = f t_1 ... t_n$
 - ▶ relations are interpreted as follows: $\langle t_1, ..., t_n \rangle \in a.R$ iff $v(R t_1, ..., t_n) = true$
 - variables are mapped to terms (how doesn't matter)
- Notice that $\mathscr{J} \models \psi$. We need to check that for all vars x_1, \dots, x_n in ψ , and for all t_1, \dots, t_n in H, $\mathscr{J} \frac{t_1 \dots t_n}{x_1 \dots x_n} \models \psi$ iff $\mathscr{J} \frac{\mathscr{J}(t_1) \dots \mathscr{J}(t_n)}{x_1 \dots x_n} \models \psi$ iff $\mathscr{J} \models \psi \frac{t_1 \dots t_n}{x_1 \dots x_n}$

which holds by construction since G contains all ground instances

Slides by Pete Manolios for CS4820

FOL Checking

- FO validity checker: Given FO φ, negate & Skolemize to get universal ψ s.t. Valid(φ) iff UNSAT(ψ). Let G be the set of ground instances of ψ (possibly infinite, but countable). Let G₁, G₂ ..., be a sequence of finite subsets of G s.t. ∀g⊆G, |g|<ω, ∃n s.t. g⊆G_n. If ∃n s.t. Unsat G_n, then Unsat ψ and Valid φ
- Question 1: SAT checking
 - Gilmore (1960): Maintain conjunction of instances so far in DNF, so SAT checking is easy, but there is a blowup due to DNF
 - Davis Putnam (1960): Convert ψ to CNF, so adding new instances does not lead to blowup
 - ▶ In general, any SAT solver can be used, eg, DPLL much better than DNF
- Question 2: How should we generate G_i?
 - ▶ Gilmore: Instances over terms with at most 0, 1, ..., functions
 - Any such "naive" method leads to lots of useless work, eg, the book has code for minimizing instances and reductions can be drastic

Unification

- ▶ Better idea: intelligently instantiate formulas. Consider the clauses $\{P(x, f(y)) \lor Q(x, y), \neg P(g(u), v)\}$
- ▶ Instead of blindly instantiating, use x=g(u), v=f(y) so that we can resolve { $P(g(u), f(y)) \lor Q(g(u), y), \neg P(g(u), f(y))$ }
- Now, resolution gives us {Q(g(u), y)}
- Much better than waiting for our enumeration to allow some resolutions
- ▶ Unification: Given a set of pairs of terms $S = \{(s_1,t_1), ..., (s_n,t_n)\}$ a *unifier* of S is a substitution σ such that $s_i | \sigma = t_i | \sigma$
- ▶ We want an algorithm that finds a most general unifier if it exists
 - ▶ σ is *more general* than τ , $\sigma \leq \tau$, iff $\tau = \delta \circ \sigma$ for some substitution δ
 - ▶ Notice that if σ is a unifier, so is $\tau \circ \sigma$
- Similar to solving a set of simultaneous equations, e.g., find unifiers for