
Lecture 15 

Pete Manolios

Northeastern

Computer-Aided Reasoning, Lecture 15



Slides by Pete Manolios for CS4820

Project Presentations

Dustin



Slides by Pete Manolios for CS4820

Reduction to Propositional SAT
We reduced FOL SAT to SAT of the universal fragment


We now go one step further

Theorem: A universal FO formula (w/out =) is SAT iff all finite sets of ground 
instances are (propositionally) SAT (eg P(x) ∨ ¬P(x) is propositionally SAT) 


Corollary: A universal FO formula (w/out =) is UNSAT iff some finite set of 
ground instances is (propositionally) UNSAT


FO validity checker: Given FO φ, negate & Skolemize to get universal ψ s.t. 
Valid(φ) iff UNSAT(ψ). Let G be the set of ground instances of ψ (possibly 
infinite, but countable). Let G1, G2 …, be a sequence of finite subsets of G 
s.t. ∀g⊆G,|g|<ω, ∃n s.t. g⊆Gn. If ∃n s.t. Unsat Gn, then Unsat ψ and Valid φ 


The SAT checking is done via a propositional SAT solver!

If φ is not valid, the checker may never terminate, i.e., we have a semi-
decision procedure and we’ll see that’s all we can hope for

How should we generate Gi? One idea is to generate all instances over 
terms with at most 0, 1, … , functions. We’ll explore that more later.

ground: quantifier/variable free



Slides by Pete Manolios for CS4820

Example
⟨∃x ⟨∀y P(x) ⇒ P(y)⟩⟩ is Valid iff ⟨∀x ⟨∃y P(x) ∧ ¬P(y)⟩⟩ is UNSAT

iff ⟨∀x P(x) ∧ ¬P( fy(x))⟩ is UNSAT

Herbrand universe of FO language L is the set of all ground terms of L, except 
that if L has no constants, we add c to make the universe non-empty.

For our example we have H = {c, fy(c), fy(fy(c)), …} 

So G = {P(t) ∧ ¬P(fy(t)) | t ∈ H} 

Notice that ∆ = {P(c) ∧ ¬P(fy(c)), P(fy(c)) ∧ ¬P(fy(fy(c)))} is UNSAT


the SAT solver will report UNSAT for: P(c) ∧ ¬P(fy(c)) ∧ P(fy(c)) ∧ ¬P(fy(fy(c)))

So, for the first Gi that has both ¬P(fy(c)) and P(fy(c)) will lead to termination

BTW, why do we restrict ourselves to FO w/out equality?


Consider P(c) ∧ ¬P(d) ∧ c=d

H = {c,d}

G = {P(c) ∧ ¬P(d) ∧ c=d}, which is propositionally SAT, but FO UNSAT



Slides by Pete Manolios for CS4820

Propositional Compactness

A set Γ of propositional formulas is SAT iff every finite subset is SAT

This is a key theorem justifying the correctness of our FO validity checker

Proof: Ping is easy. Let p1, p2, …, be an enumeration of the atoms (assume 
the set of atoms is countable). Define Δi as follows


Δ0 = Γ

Δn+1 = Δn ∪ {pn+1} if this is finitely SAT

Δn+1 = Δn ∪ {¬pn+1} otherwise


Note: for all i, Δi is finitely SAT as is Δ = ∪iΔi  (any finite subset is in some Δi)

Here is an assignment for Γ: v(pi) = true iff pi ∈ Δ



Slides by Pete Manolios for CS4820

Herbrand Interpretations
Let ψ be a universal FO formula w/out equality


Let H be the Herbrand universe (all terms in language of ψ, as before)

If G (all ground instances of ψ) is propositionally UNSAT then ψ is UNSAT 
(universal formulas imply all their instances)

If G is propositionally SAT, say with assignment v, then ψ is SAT


Let ℐ be a canonical interpretation where the universe is H and

constants are interpreted autonomously: a(c) = c 

functions are interpreted autonomously: a(f t1 … tn) = f t1 … tn


relations are interpreted as follows: ⟨t1, …, tn⟩ ∈ a.R iff v(R t1, …, tn) = true

variables are mapped to terms (how doesn’t matter)


Notice that ℐ ⊨ ψ. We need to check that for all vars x1,…, xn  in ψ, and for all 
t1, …, tn in H,                         iff                                    iff


   which holds by construction since G contains all ground instances

𝒥
𝒥(t1)…𝒥(tn)

x1…xn
⊧ ψ𝒥

t1…tn
x1…xn

⊧ ψ 𝒥 ⊧ ψ
t1…tn
x1…xn



Slides by Pete Manolios for CS4820

FOL Checking
FO validity checker: Given FO φ, negate & Skolemize to get universal ψ s.t. 
Valid(φ) iff UNSAT(ψ). Let G be the set of ground instances of ψ (possibly 
infinite, but countable). Let G1, G2 …, be a sequence of finite subsets of G 
s.t. ∀g⊆G,|g|<ω, ∃n s.t. g⊆Gn. If ∃n s.t. Unsat Gn, then Unsat ψ and Valid φ

Question 1: SAT checking


Gilmore (1960): Maintain conjunction of instances so far in DNF, so SAT 
checking is easy, but there is a blowup due to DNF

Davis Putnam (1960): Convert ψ to CNF, so adding new instances does 
not lead to blowup

In general, any SAT solver can be used, eg, DPLL much better than DNF


Question 2: How should we generate Gi? 

Gilmore: Instances over terms with at most 0, 1, … , functions

Any such “naive” method leads to lots of useless work, eg, the book has 
code for minimizing instances and reductions can be drastic



Slides by Pete Manolios for CS4820

Unification
Better idea: intelligently instantiate formulas. Consider the clauses

{Q(g(u), y)}

Instead of blindly instantiating, use x=g(u), v=f(y) so that we can resolve
{P(x, f(y)) ∨ Q(x, y), ¬P(g(u), v)}

Now, resolution gives us
{P(g(u), f(y)) ∨ Q(g(u), y), ¬P(g(u), f(y))}

Much better than waiting for our enumeration to allow some resolutions

Unification: Given a set of pairs of terms S = {(s1,t1), …, (sn,tn)} a unifier of S 
is a substitution σ such that si|σ = ti|σ

We want an algorithm that finds a most general unifier if it exists


σ is more general than τ, σ ≤ τ, iff τ = δ∘σ for some substitution δ

Notice that if σ is a unifier, so is τ∘σ 


Similar to solving a set of simultaneous equations, e.g., find unifiers for

{(P(f(w), f(y)), P(x, f(g(u))), (P(x,u), P(v,g(v))}  and  {(x, f(y)), (y, g(x))}


