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Reduction to Propositional SAT
We reduced FOL SAT to SAT of the universal fragment


We now go one step further

Theorem: A universal FO formula (w/out =) is SAT iff all finite sets of ground 
instances are (propositionally) SAT (eg P(x) ∨ ¬P(x) is propositionally SAT) 


Corollary: A universal FO formula (w/out =) is UNSAT iff some finite set of 
ground instances is (propositionally) UNSAT


FO validity checker: Given FO φ, negate & Skolemize to get universal ψ s.t. 
Valid(φ) iff UNSAT(ψ). Let G be the set of ground instances of ψ (possibly 
infinite, but countable). Let G1, G2 …, be a sequence of finite subsets of G 
s.t. ∀g⊆G,|g|<ω, ∃n s.t. g⊆Gn. If ∃n s.t. Unsat Gn, then Unsat ψ and Valid φ 


The SAT checking is done via a propositional SAT solver!

If φ is not valid, the checker may never terminate, i.e., we have a semi-
decision procedure and we’ll see that’s all we can hope for

How should we generate Gi? One idea is to generate all instances over 
terms with at most 0, 1, … , functions. We’ll explore that more later.

ground: quantifier/variable free
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Example
⟨∃x ⟨∀y P(x) ⇒ P(y)⟩⟩ is Valid iff ⟨∀x ⟨∃y P(x) ∧ ¬P(y)⟩⟩ is UNSAT

iff ⟨∀x P(x) ∧ ¬P( fy(x))⟩ is UNSAT

Herbrand universe of FO language L is the set of all ground terms of L, except 
that if L has no constants, we add c to make the universe non-empty.

For our example we have H = {c, fy(c), fy(fy(c)), …} 

So G = {P(t) ∧ ¬P(fy(t)) | t ∈ H} 

Notice that ∆ = {P(c) ∧ ¬P(fy(c)), P(fy(c)) ∧ ¬P(fy(fy(c)))} is UNSAT


the SAT solver will report UNSAT for: P(c) ∧ ¬P(fy(c)) ∧ P(fy(c)) ∧ ¬P(fy(fy(c)))

So, for the first Gi that has both ¬P(fy(c)) and P(fy(c)) will lead to termination

BTW, why do we restrict ourselves to FO w/out equality?


Consider P(c) ∧ ¬P(d) ∧ c=d

H = {c,d}

G = {P(c) ∧ ¬P(d) ∧ c=d}, which is propositionally SAT, but FO UNSAT
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Propositional Compactness

A set Γ of propositional formulas is SAT iff every finite subset is SAT

This is a key theorem justifying the correctness of our FO validity checker

Proof: Ping is easy. Let p1, p2, …, be an enumeration of the atoms (assume 
the set of atoms is countable). Define Δi as follows


Δ0 = Γ

Δn+1 = Δn ∪ {pn+1} if this is finitely SAT

Δn+1 = Δn ∪ {¬pn+1} otherwise


Note: for all i, Δi is finitely SAT as is Δ = ∪iΔi  (any finite subset is in some Δi)

Here is an assignment for Γ: v(pi) = true iff pi ∈ Δ
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Herbrand Interpretations
Let ψ be a universal FO formula w/out equality


Let H be the Herbrand universe (all terms in language of ψ, as before)

If G (all ground instances of ψ) is propositionally UNSAT then ψ is UNSAT 
(universal formulas imply all their instances)

If G is propositionally SAT, say with assignment v, then ψ is SAT


Let ℐ be a canonical interpretation where the universe is H and

constants are interpreted autonomously: a(c) = c 

functions are interpreted autonomously: a(f t1 … tn) = f t1 … tn


relations are interpreted as follows: ⟨t1, …, tn⟩ ∈ a.R iff v(R t1, …, tn) = true

variables are mapped to terms (how doesn’t matter)


Notice that ℐ ⊨ ψ. We need to check that for all vars x1,…, xn  in ψ, and for all 
t1, …, tn in H,                         iff                                    iff


   which holds by construction since G contains all ground instances

𝒥
𝒥(t1)…𝒥(tn)

x1…xn
⊧ ψ𝒥

t1…tn
x1…xn

⊧ ψ 𝒥 ⊧ ψ
t1…tn
x1…xn



Slides by Pete Manolios for CS4820

FOL Checking
FO validity checker: Given FO φ, negate & Skolemize to get universal ψ s.t. 
Valid(φ) iff UNSAT(ψ). Let G be the set of ground instances of ψ (possibly 
infinite, but countable). Let G1, G2 …, be a sequence of finite subsets of G 
s.t. ∀g⊆G,|g|<ω, ∃n s.t. g⊆Gn. If ∃n s.t. Unsat Gn, then Unsat ψ and Valid φ

Question 1: SAT checking


Gilmore (1960): Maintain conjunction of instances so far in DNF, so SAT 
checking is easy, but there is a blowup due to DNF

Davis Putnam (1960): Convert ψ to CNF, so adding new instances does 
not lead to blowup

In general, any SAT solver can be used, eg, DPLL much better than DNF


Question 2: How should we generate Gi? 

Gilmore: Instances over terms with at most 0, 1, … , functions

Any such “naive” method leads to lots of useless work, eg, the book has 
code for minimizing instances and reductions can be drastic
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Unification
Better idea: intelligently instantiate formulas. Consider the clauses

{Q(g(u), y)}

Instead of blindly instantiating, use x=g(u), v=f(y) so that we can resolve
{P(x, f(y)) ∨ Q(x, y), ¬P(g(u), v)}

Now, resolution gives us
{P(g(u), f(y)) ∨ Q(g(u), y), ¬P(g(u), f(y))}

Much better than waiting for our enumeration to allow some resolutions

Unification: Given a set of pairs of terms S = {(s1,t1), …, (sn,tn)} a unifier of S 
is a substitution σ such that si|σ = ti|σ

We want an algorithm that finds a most general unifier if it exists


σ is more general than τ, σ ≤ τ, iff τ = δ∘σ for some substitution δ

Notice that if σ is a unifier, so is τ∘σ 


Similar to solving a set of simultaneous equations, e.g., find unifiers for

{(P(f(w), f(y)), P(x, f(g(u))), (P(x,u), P(v,g(v))}  and  {(x, f(y)), (y, g(x))}


