Lecture 15

Pete Manolios
Northeastern

Computer-Aided Reasoning, Lecture 15

Project Presentations

2 Dustin

Slides by Pete Manolios for CS4820

Reduction to Propositional SAT

> We reduced FOL SAT to SAT of the universal fragment

> We now go one step further ground: quantifier/variable free

» Theorem: A universal FO formula (w/out =) is SAT iff all finite sets of ground
instances are (propositionally) SAT (eg P(x) v =P(x) is propositionally SAT)

> Corollary: A universal FO formula (w/out =) is UNSAT iff some finite set of
ground instances is (propositionally) UNSAT

> FO validity checker: Given FO ¢, negate & Skolemize to get universal s.t.
Valid(¢) iff UNSAT(). Let G be the set of ground instances of { (possibly
infinite, but countable). Let G1, G2 ..., be a sequence of finite subsets of G
s.t. vgCG,|g|<w, 3n s.t. g<Gy. If 3n s.t. Unsat Gy, then Unsat and Valid ¢

> The SAT checking is done via a propositional SAT solver!

> If ¢ is not valid, the checker may never terminate, i.e., we have a semi-
decision procedure and we’ll see that’s all we can hope for

» How should we generate G;? One idea is to generate all instances over
terms with at most O, 1, ... , functions. We’ll explore that more later.

Slides by Pete Manolios for CS4820

Example

(Ax (Vy P(x) = P(y))) is Valid iff (Vx (Iy P(x) A =P(y))) is UNSAT
iff (Vx P(x) A ~P(f,(x))) is UNSAT

» Herbrand universe of FO language L is the set of all ground terms of L, except
that if L has no constants, we add ¢ to make the universe non-empty.

> For our example we have H = {c, f,(c), f,(fy(c)), ...}
»So G = {P(t) A =P(f,(t)) | t € H}
» Notice that A = {P(c) A =P(f,(c)), P(f,(c)) A =P(f,(fy(c)))} is UNSAT
> the SAT solver will report UNSAT for: P(c) A =P(f,(c)) A P(fy(c)) A =P(f,(fy(c)))
> So, for the first G that has both —-P(f,(c)) and P(f,(c)) will lead to termination
> BTW, why do we restrict ourselves to FO w/out equality?
» Consider P(c) A =P(d) A c=d
> H = {c,d}
> G = {P(c) A =P(d) A c=d}, which is propositionally SAT, but FO UNSAT

Slides by Pete Manolios for CS4820

Propositional Compactness

> A set [of propositional formulas is SAT iff every finite subset is SAT
> This is a key theorem justifying the correctness of our FO validity checker

> Proof: Ping is easy. Let py, p2, ..., be an enumeration of the atoms (assume
the set of atoms is countable). Define A; as follows
pAo=1T

? An+1 = DAn u {pn+1} if this is finitely SAT

® Any1 = Anu {-pn+1} Otherwise
Note: for all i, Aiis finitely SAT as is A = uiA; (any finite subset is in some Aj)
Here is an assignment for I": v(p)) = true iff pi € A

Slides by Pete Manolios for CS4820

Herbrand Interpretations

> Let be a universal FO formula w/out equality

> Let H be the Herbrand universe (all terms in language of , as before)

> If G (all ground instances of) is propositionally UNSAT then is UNSAT
(universal formulas imply all their instances)

> If G is propositionally SAT, say with assignment v, then ¢ is SAT
> Let 4 be a canonical interpretation where the universe is H and

> constants are interpreted autonomously: a(c) = ¢
» functions are interpreted autonomously: a(ft1 ... t)) = ft1 ... tn
e relations are interpreted as follows: (t1, ..., th) e a.Riff v(R t1, ..., tn) = true

> variables are mapped to terms (how doesn’t matter)

» Notice that 4= . We need to check that for all vars x3,..., x» in ¢, and for all

. ...t . t)... J(t, . f...t,
t1,...,tn|nH,j1 E I jj(l) j()Fw iff f|=l//1
xl...xn xl"'xn xl...xn

which holds by construction since G contains all ground instances

Slides by Pete Manolios for CS4820

FOL Checking

> FO validity checker: Given FO ¢, negate & Skolemize to get universal ¢ s.t.
Valid(¢) iff UNSAT(). Let G be the set of ground instances of (possibly
infinite, but countable). Let G1, G2 ..., be a sequence of finite subsets of G
s.t. vgC@G,|g|<w, 3n s.t. gcGn. If an s.t. Unsat Gy, then Unsat ¢ and Valid ¢

> Question 1: SAT checking

> Gilmore (1960): Maintain conjunction of instances so far in DNF, so SAT
checking is easy, but there is a blowup due to DNF

> Davis Putnam (1960): Convert to CNF, so adding new instances does
not lead to blowup

> In general, any SAT solver can be used, eg, DPLL much better than DNF
> Question 2: How should we generate G;?
e Gilmore: Instances over terms with at most O, 1, ..., functions

> Any such “naive” method leads to lots of useless work, eg, the book has
code for minimizing instances and reductions can be drastic

Slides by Pete Manolios for CS4820

Unification

> Better idea: intelligently instantiate formulas. Consider the clauses
{P(x, f(¥) V Ox, y), 7P(g(u), v)}

> Instead of blindly instantiating, use x=g(u), v=f(y) so that we can resolve
{P(g(w), f(y) V O(g(w),y), ~P(g(w), f(y)}

> Now, resolution gives us
{0@w),y)]

> Much better than waiting for our enumeration to allow some resolutions

> Unification: Given a set of pairs of terms S = {(s1,t1), ..., (Sn,tn)} @ unifier of S
is a substitution o such that si|o = ti|o

> We want an algorithm that finds a most general unifier if it exists
> 0 is more general than T, o < T, iff T = 600 for some substitution 6
2 Notice that if o is a unifier, so is Tc0
> Similar to solving a set of simultaneous equations, e.g., find unifiers for

> {(Pf(w), 1y)), Pix, flgw))), (P(x,u), P(v,g(v))} and {(x, fly)), (v, gx))}

Slides by Pete Manolios for CS4820

