
Lecture 14

Pete Manolios

Northeastern

Computer-Aided Reasoning, Lecture 14

Slides by Pete Manolios for CS4820

Project Presentations

Ankit

Drew

Ben

Slides by Pete Manolios for CS4820

Skolem Normal Form Example
For any FO φ, we can find a universal ψ in an expanded language such
that φ is satisfiable iff ψ is satisfiable. Try it!

⟨∃x ⟨∀w ⟨∃y ⟨∀u, v ⟨∃z ϕ(x, w, y, u, v, z)⟩⟩⟩⟩⟩
First, PNF, and push existentials left (2nd order logic)

⟨∃x, Fy, Fz ⟨∀w, u, v ϕ(x, w, Fy(w), u, v, Fz(w, u, v))⟩⟩
⟨∃x, Fy ⟨∀w, u, v ⟨∃z ϕ(x, w, Fy(w), u, v, z)⟩⟩⟩

The key idea is the following equivalence
⟨∃… ⟨∀x1, …xn ⟨∃y ϕ(…, x1, …, xn, y)⟩⟩⟩

This allows us to push existential quantifiers to the left

To get back to FO, note that

So, to finish our example, we get, where c, Fy, Fz are new symbols,
⟨∀w, u, v ϕ(c, w, Fy(w), u, v, Fz(w, u, v))⟩

We need the axiom of choice
for ping

≡ ⟨∃… ⟨∃Fy ⟨∀x1, …, xn ϕ(…, x1, …, xn, Fy(x1, …, xn))⟩⟩⟩

Sat⟨∃… ⟨∀x1, …xn ⟨∃y ϕ(…, x1, …, xn, y)⟩⟩⟩ iff
Sat⟨∀x1, …, xn ϕ(…, x1, …, xn, Fy(x1, …, xn))⟩

Slides by Pete Manolios for CS4820

Skolem Normal Form Algorithm
Convert formula to NNF

⟨∃x P(x)⟩ ∧ ¬⟨∃y P(y)⟩ ⟨∃x P(x)⟩ ∧ ¬P(d)
Notice that Skolemizing in arbitrary formulas doesn’t work (hence NNF)

So, it is better to Skolemize inside-out and then convert to PNF

With NNF, we can apply Skolemization to any sub formula
⟨∀x, z x = z ∨ ⟨∃y x ⋅ y = 1⟩⟩ can be Skolemized as
⟨∀x, z x = z ∨ x ⋅ f(x) = 1⟩
⟨∀x, z ⟨∃y x = z ∨ x ⋅ y = 1⟩⟩
⟨∀x, z x = z ∨ x ⋅ f(x, z) = 1⟩

or we can convert to PNF
and then Skolemize

is not equisatisfiable with

order matters!

P(c) ∧ ⟨∀y¬P(y)⟩is equisatisfiable with
Only works with positive polarity formulas, which NNF guarantees

Slides by Pete Manolios for CS4820

FO Sat/Validity Reductions

Corollary: For any FO φ, we can find an existential ψ in an expanded language
such that φ is valid iff ψ is valid

Pf: φ is valid iff ¬φ is unsat iff (universal) φ’ is unsat iff (existential) ψ=¬φ’ is valid

Theorem: For any FO φ, we can find a universal ψ in an expanded language
such that φ is satisfiable iff ψ is satisfiable. (Proof in previous slide)

⟨∃x ⟨∀w ⟨∃y ⟨∀u, v ⟨∃z ϕ(x, w, y, u, v, z)⟩⟩⟩⟩⟩
⟨∀w, u, v ϕ(c, w, Fy(w), u, v, Fz(w, u, v))⟩

Previous

example

Notice that our approach does not give an equi-valid formula. Consider:
⟨∀x ⟨∃y P(x) ⇒ P(y)⟩⟩

⟨∀x P(x) ⇒ P(fy(x))⟩
Both formulas are satisfiable; the first is valid but the second is not

ϕ = ⟨∀x ⟨∃y P(x) ⇒ P(y)⟩⟩ → ¬ϕ = ⟨∃x ⟨∀y P(x) ∧ ¬P(y)⟩⟩
ϕ′� = ⟨∀y P(c) ∧ ¬P(y)⟩ → ψ = ⟨∃y P(c) ⇒ P(y)⟩

So FO Sat reduced to FO universal Sat and FO Validity to FO universal Unsat

Slides by Pete Manolios for CS4820

Reduction to Propositional SAT
We reduced FOL SAT to SAT of the universal fragment

We now go one step further

Theorem: A universal FO formula (w/out =) is SAT iff all finite sets of ground
instances are (propositionally) SAT (eg P(x) ∨ ¬P(x) is propositionally SAT)

Corollary: A universal FO formula (w/out =) is UNSAT iff some finite set of
ground instances is (propositionally) UNSAT

FO validity checker: Given FO φ, negate & Skolemize to get universal ψ s.t.
Valid(φ) iff UNSAT(ψ). Let G be the set of ground instances of ψ (possibly
infinite, but countable). Let G1, G2 …, be a sequence of subsets of G s.t.
∀g⊆G, ∃n s.t. g⊆Gn. If ∃n s.t. Unsat Gn, then Unsat ψ and Valid φ.

The SAT checking is done via a propositional SAT solver!

If φ is not valid, the checker may never terminate, i.e., we have a semi-
decision procedure and we’ll see that’s all we can hope for

How should we generate Gi? One idea is to generate all instances over
terms with at most 0, 1, … , functions. We’ll explore that more later.

ground: quantifier/variable free

Slides by Pete Manolios for CS4820

Example
⟨∃x ⟨∀y P(x) ⇒ P(y)⟩⟩ is Valid iff ⟨∀x ⟨∃y P(x) ∧ ¬P(y)⟩⟩ is UNSAT

iff ⟨∀x P(x) ∧ ¬P(fy(x))⟩ is UNSAT

Herbrand universe of FO language L is the set of all ground terms of L, except
that if L has no constants, we add c to make the universe non-empty.

For our example we have H = {c, fy(c), fy(fy(c)), …}

So G = {P(t) ∧ ¬P(fy(t)) | t ∈ H}

Notice that ∆ = {P(c) ∧ ¬P(fy(c)), P(fy(c)) ∧ ¬P(fy(fy(c)))} is UNSAT

the SAT solver will report UNSAT for: P(c) ∧ ¬P(fy(c)) ∧ P(fy(c)) ∧ ¬P(fy(fy(c)))

So, for the first Gi that has both ¬P(fy(c)) and P(fy(c)) will lead to termination

