Lecture 14

Pete Manolios Northeastern

Computer-Aided Reasoning, Lecture 14

Project Presentations

- Ankit
- Drew
- Ben

Skolem Normal Form Example

For any FO ϕ, we can find a universal ψ in an expanded language such that ϕ is satisfiable iff ψ is satisfiable. Try it!

$$
\langle\exists x\langle\forall w\langle\exists y\langle\forall u, v\langle\exists z \phi(x, w, y, u, v, z)\rangle\rangle\rangle\rangle\rangle
$$

First, PNF, and push existentials left (2nd order logic)

$$
\begin{gathered}
\left\langle\exists x, F_{y}\left\langle\forall w, u, v\left\langle\exists z \phi\left(x, w, F_{y}(w), u, v, z\right)\right\rangle\right\rangle\right\rangle \\
\left\langle\exists x, F_{y}, F_{z}\left\langle\forall w, u, v \phi\left(x, w, F_{y}(w), u, v, F_{z}(w, u, v)\right)\right\rangle\right\rangle
\end{gathered}
$$

The key idea is the following equivalence
We need the axiom of choice

$$
\begin{aligned}
& \left\langle\exists \ldots\left\langle\forall x_{1}, \ldots x_{n}\left\langle\exists y \phi\left(\ldots, x_{1}, \ldots, x_{n}, y\right)\right\rangle\right\rangle\right\rangle \text { for ping } \\
\equiv & \left\langle\exists \ldots\left\langle\exists F_{y}\left\langle\forall x_{1}, \ldots, x_{n} \phi\left(\ldots, x_{1}, \ldots, x_{n}, F_{y}\left(x_{1}, \ldots, x_{n}\right)\right)\right\rangle\right\rangle\right\rangle
\end{aligned}
$$

This allows us to push existential quantifiers to the left
To get back to FO, note that

$$
\begin{aligned}
& \text { Sat }\left\langle\exists \ldots\left\langle\forall x_{1}, \ldots x_{n}\left\langle\exists y \phi\left(\ldots, x_{1}, \ldots, x_{n}, y\right)\right\rangle\right\rangle\right\rangle \text { iff } \\
& \text { Sat } \left.\left\langle\forall x_{1}, \ldots, x_{n} \phi\left(\ldots, x_{1}, \ldots, x_{n}, F_{y}\left(x_{1}, \ldots, x_{n}\right)\right)\right\rangle\right\rangle
\end{aligned}
$$

So, to finish our example, we get, where c, F_{y}, F_{z} are new symbols,

$$
\left\langle\forall w, u, v \phi\left(c, w, F_{y}(w), u, v, F_{z}(w, u, v)\right)\right\rangle
$$

Skolem Normal Form Algorithm

Convert formula to NNF
Notice that Skolemizing in arbitrary formulas doesn't work (hence NNF)
$\langle\exists x P(x)\rangle \wedge \neg\langle\exists y P(y)\rangle$ is not equisatisfiable with $\langle\exists x P(x)\rangle \wedge \neg P(d)$ is equisatisfiable with $P(c) \wedge\langle\forall y \neg P(y)\rangle$

Only works with positive polarity formulas, which NNF guarantees
With NNF, we can apply Skolemization to any sub formula

$$
\begin{array}{ll}
\langle\forall x, z x=z \vee\langle\exists y x \cdot y=1\rangle\rangle & \text { can be Skolemized as } \\
\langle\forall x, z x=z \vee x \cdot f(x)=1\rangle & \text { or we can convert to PNF } \\
\langle\forall x, z\langle\exists y x=z \vee x \cdot y=1\rangle\rangle & \text { and then Skolemize } \\
\langle\forall x, z x=z \vee x \cdot f(x, z)=1\rangle & \text { order matters! }
\end{array}
$$

So, it is better to Skolemize inside-out and then convert to PNF

FO Sat/Validity Reductions

Theorem: For any FO ϕ, we can find a universal ψ in an expanded language such that ϕ is satisfiable iff ψ is satisfiable. (Proof in previous slide)

$$
\begin{array}{lc}
\text { Previous } & \langle\exists x\langle\forall w\langle\exists y\langle\forall u, v\langle\exists z \phi(x, w, y, u, v, z)\rangle\rangle\rangle\rangle\rangle \\
\text { example } & \left\langle\forall w, u, v \phi\left(c, w, F_{y}(w), u, v, F_{z}(w, u, v)\right)\right\rangle
\end{array}
$$

Notice that our approach does not give an equi-valid formula. Consider:

$$
\begin{aligned}
\langle\forall x\langle\exists y P(x) & \Rightarrow P(y)\rangle\rangle \\
\langle\forall x P(x) & \left.\Rightarrow P\left(f_{y}(x)\right)\right\rangle
\end{aligned}
$$

Both formulas are satisfiable; the first is valid but the second is not Corollary: For any FO ϕ, we can find an existential ψ in an expanded language such that ϕ is valid iff ψ is valid
Pf: ϕ is valid iff $\neg \phi$ is unsat iff (universal) ϕ^{\prime} is unsat iff (existential) $\psi=\neg \phi$ ' is valid

$$
\begin{aligned}
\phi=\langle\forall x\langle\exists y P(x) \Rightarrow P(y)\rangle\rangle & \rightarrow \quad \neg \phi=\langle\exists x\langle\forall y P(x) \wedge \neg P(y)\rangle\rangle \\
\phi^{\prime}=\langle\forall y P(c) \wedge \neg P(y)\rangle & \rightarrow \quad \psi=\langle\exists y P(c) \Rightarrow P(y)\rangle
\end{aligned}
$$

So FO Sat reduced to FO universal Sat and FO Validity to FO universal Unsat

Reduction to Propositional SAT

- We reduced FOL SAT to SAT of the universal fragment
- We now go one step further
ground: quantifier/variable free
* Theorem: A universal FO formula (w/out $=$) is SAT iff all finite sets of ground instances are (propositionally) SAT (eg $\mathrm{P}(\mathrm{x}) \vee \neg \mathrm{P}(\mathrm{x})$ is propositionally SAT)
- Corollary: A universal FO formula (w/out =) is UNSAT iff some finite set of ground instances is (propositionally) UNSAT
- FO validity checker: Given FO ϕ, negate \& Skolemize to get universal ψ s.t. Valid (ϕ) iff UNSAT (ψ). Let G be the set of ground instances of ψ (possibly infinite, but countable). Let $\mathrm{G}_{1}, \mathrm{G}_{2} \ldots$, be a sequence of subsets of G s.t. $\forall \mathrm{g} \subseteq \mathrm{G}$, $\exists \mathrm{n}$ s.t. $\mathrm{g} \subseteq \mathrm{G}_{\mathrm{n}}$. If $\exists \mathrm{n}$ s.t. Unsat G_{n}, then Unsat ψ and Valid ϕ.
- The SAT checking is done via a propositional SAT solver!
- If ϕ is not valid, the checker may never terminate, i.e., we have a semidecision procedure and we'll see that's all we can hope for
- How should we generate G_{i} ? One idea is to generate all instances over terms with at most $0,1, \ldots$, functions. We'll explore that more later.

Example

$$
\begin{array}{r}
\langle\exists x\langle\forall y P(x) \Rightarrow P(y)\rangle\rangle \text { is Valid iff }\langle\forall x\langle\exists y P(x) \wedge \neg P(y)\rangle\rangle \text { is UNSAT } \\
\text { iff }\left\langle\forall x P(x) \wedge \neg P\left(f_{y}(x)\right)\right\rangle \text { is UNSAT }
\end{array}
$$

- Herbrand universe of FO language L is the set of all ground terms of L , except that if L has no constants, we add c to make the universe non-empty.
- For our example we have $H=\left\{c, f_{y}(c), f_{y}\left(f_{y}(c)\right), \ldots\right\}$
Δ So $G=\left\{P(t) \wedge \neg P\left(f_{y}(t)\right) \mid t \in H\right\}$
- Notice that $\Delta=\left\{\mathrm{P}(\mathrm{c}) \wedge \neg \mathrm{P}\left(\mathrm{f}_{y}(\mathrm{c})\right), \mathrm{P}\left(\mathrm{f}_{y}(\mathrm{c})\right) \wedge \neg \mathrm{P}\left(\mathrm{f}_{y}\left(\mathrm{f}_{y}(\mathrm{c})\right)\right)\right\}$ is UNSAT
- the SAT solver will report UNSAT for: $\mathrm{P}(\mathrm{c}) \wedge \neg \mathrm{P}\left(\mathrm{f}_{y}(\mathrm{c})\right) \wedge \mathrm{P}\left(\mathrm{f}_{y}(\mathrm{c})\right) \wedge \neg \mathrm{P}\left(\mathrm{f}_{y}\left(\mathrm{f}_{y}(\mathrm{c})\right)\right)$
Δ So, for the first G_{i} that has both $\neg \mathrm{P}\left(\mathrm{f}_{\mathrm{y}}(\mathrm{C})\right)$ and $\mathrm{P}\left(\mathrm{f}_{y}(\mathrm{C})\right)$ will lead to termination

