
Lecture 13

Pete Manolios

Northeastern

Computer-Aided Reasoning, Lecture 13

Slides by Pete Manolios for CS4820

Coincidence Lemma

Let ℐ1 = ⟨A,a1,β1⟩ be an S1-interpretation and let ℐ2 = ⟨A,a2, β2⟩ be
an S2-interpretation (both have the same domain). Let S = S1 ∩ S2.

1. Let t be an S-term. If ℐ1 and ℐ2 agree on the S-symbols occurring
in t and on the variables occurring in t, then ℐ1(t) = ℐ2(t).

2. Let φ be an S-formula. If ℐ1 and ℐ2 agree on the S-symbols and on
the variables occurring free in φ, then ℐ1 ⊨ φ iff ℐ2 ⊨ φ.

Proof: By induction on S-terms and then on S-formulas

This is a very useful lemma

Slides by Pete Manolios for CS4820

Substitution
Substituting t for x in φ yields φ’, which says about t what φ says about x

Consider φ = ∃z z+z ≡ x. Note that ⟨N,β⟩ ⊨ φ iff β.x is even

Replacing x by y gives, φ′ = ∃zz+z≡y ,where ⟨N,β⟩ ⊨ φ’ iff β.y is even; good!

What about replacing x by z? This gives φ′ =∃zz+z≡z, but N ⊨ φ’; bad!

Have to deal with variable capture

The book provides a definition which replaces bound occurrences of z with
a new variable in φ

Theorem: For every term, t,

Theorem: For every formula, φ,

Theorem: If φ is Valid then so is

𝒥(t
t0…tr
x0…xr

) = 𝒥
𝒥(t0)…𝒥(tr)

x0…xr
(t)

𝒥 ⊧ ϕ
t0…tr
x0…xr

 iff 𝒥
𝒥(t0)…𝒥(tr)

x0…xr
⊧ ϕ

ϕ
t0…tr
x0…xr

Slides by Pete Manolios for CS4820

Formalization Examples

Equivalence relations∀xRxx
∀x∀y(Rxy) ⇒ (Ryx)

∀x∀y∀z((Rxy ∧ Ryz) ⇒ Rxz)

⟨∀x :: xRx⟩
⟨∀x, y :: xRy ⇒ yRx⟩

∃=1xϕ

∃x(ϕ ∧ ∀y(ϕ
y
x

⇒ x = y))

⟨∀x, y, z :: xRy ∧ yRz ⇒ xRz⟩

The way I would write it

Define a new quantifier “there exists exactly one,” written

Try it!

Slides by Pete Manolios for CS4820

Prenex Normal Form Example

⟨∀x :: P(x) ∨ R(y)⟩ ⇒ ⟨∃y, x :: Q(y) ∨ ¬⟨∃x :: P(x) ∧ Q(x)⟩⟩

⟨∃z :: ⟨∀x :: (¬P(z) ∧ ¬R(y)) ∨ Q(z) ∨ ¬P(x) ∨ ¬Q(x)⟩⟩

Convert to NNF (Negation Normal Form) by eliminating ⇒ , ≡ , if
¬⟨∀x :: P(x) ∨ R(y)⟩ ∨ ⟨∃y :: Q(y) ∨ ⟨∀x :: ¬P(x) ∨ ¬Q(x)⟩⟩
⟨∃x :: ¬P(x) ∧ ¬R(y)⟩ ∨ ⟨∃y :: Q(y) ∨ ⟨∀x :: ¬P(x) ∨ ¬Q(x)⟩⟩

Pull quantifiers to the left

Constant propagation, remove vacuous quantifiers (x not free in body)
⟨∀x :: P(x) ∨ R(y)⟩ ⇒ ⟨∃y :: Q(y) ∨ ¬⟨∃x :: P(x) ∧ Q(x)⟩⟩

⟨∃x :: ¬P(x) ∧ ¬R(y)⟩ ∨ ⟨∃y :: ⟨∀x :: Q(y) ∨ ¬P(x) ∨ ¬Q(x)⟩⟩

⟨∃z :: (¬P(z) ∧ ¬R(y)) ∨ ⟨∀x :: Q(z) ∨ ¬P(x) ∨ ¬Q(x)⟩⟩⟩

matrix

For any FO φ, we can find an equivalent FO ψ where all quantifiers
are to the left. Try it!

Merge exists, avoid
variable capture

Slides by Pete Manolios for CS4820

Prenex Normal Form Algorithm

Convert to NNF (Negation Normal Form) by eliminating

Start with the propositional logic algorithms and extend with:

⇒ , ≡ , if

Constant propagation, remove vacuous quantifiers.

Start with the propositional logic algorithms and extend with:

¬⟨∀x :: ϕ⟩ ≡ ⟨∃x :: ¬ϕ⟩
¬⟨∃x :: ϕ⟩ ≡ ⟨∀x :: ¬ϕ⟩

⟨∀x :: ϕ⟩ ≡ ϕ when x is not free in ϕ
⟨∃x :: ϕ⟩ ≡ ϕ when x is not free in ϕ

Slides by Pete Manolios for CS4820

Prenex Normal Form Algorithm

Convert to NNF (Negation Normal Form) by eliminating ⇒ , ≡ , if

Pull quantifiers to the left (interesting part)

Constant propagation, remove vacuous quantifiers

⟨∀x :: ϕ⟩ ∨ ψ ≡ ⟨∀x :: ϕ ∨ ψ⟩ where x is not free in ψ

⟨∃x :: ϕ⟩ ∨ ψ ≡ ⟨∃x :: ϕ ∨ ψ⟩ where x is not free in ψ
ψ ∨ ⟨∀x :: ϕ⟩ ≡ ⟨∀x :: ψ ∨ ϕ⟩ where x is not free in ψ

ψ ∨ ⟨∃x :: ϕ⟩ ≡ ⟨∃x :: ψ ∨ ϕ⟩ where x is not free in ψ

Similarly for conjunction, etc. Use substitution when x is free.

Minimizing the number of quantifiers is a good idea.

⟨∃x :: ϕ⟩ ∨ ⟨∃y :: ψ⟩ ≡ ⟨∃z :: ϕ
z
x

∨ ψ
z
y

⟩ where z is not free in LHS

⟨∀x :: ϕ⟩ ∧ ⟨∀y :: ψ⟩ ≡ ⟨∀z :: ϕ
z
x

∧ ψ
z
y

⟩ where z is not free in LHS

Slides by Pete Manolios for CS4820

Skolem Normal Form Example
For any FO φ, we can find a universal ψ in an expanded language
such that φ is satisfiable iff ψ is satisfiable. Try it!
⟨∃x ⟨∀w ⟨∃y ⟨∀u, v ⟨∃z ϕ(x, w, y, u, v, z)⟩⟩⟩⟩⟩

First, PNF, and push existentials left (2nd order logic)

⟨∃x, Fy, Fz ⟨∀w, u, v ϕ(x, w, Fy(w), u, v, Fz(w, u, v))⟩⟩
⟨∃x, Fy ⟨∀w, u, v ⟨∃z ϕ(x, w, Fy(w), u, v, z)⟩⟩⟩

The key idea is the following equivalence
⟨∃… ⟨∀x ⟨∃y ϕ(…, x, y)⟩⟩⟩ ≡ ⟨∃… ⟨∃Fy ⟨∀x ϕ(…, x, Fy(x))⟩⟩⟩

This allows us to push existential quantifiers to the left

To get back to FO, note that
Sat⟨∃… ⟨∀x ⟨∃y ϕ(…, x, y)⟩⟩⟩ iff Sat⟨∀x ϕ(…, x, Fy(x))⟩
So, to finish our example, we get, where c, Fy, Fz are new symbols
⟨∀w, u, v ϕ(c, w, Fy(w), u, v, Fz(w, u, v))⟩

We need the axiom
of choice for ping

Slides by Pete Manolios for CS4820

Skolem Normal Form Algorithm
Convert formula to NNF

⟨∃x P(x)⟩ ∧ ¬⟨∃y P(y)⟩ ⟨∃x P(x) ∧ ¬P(c)⟩
Notice that Skolemizing in arbitrary formulas doesn’t work

So, it is better to Skolemize inside-out and then convert to PNF

With NNF, we can apply Skolemization to any sub formula
⟨∀x, z x = z ∨ ⟨∃y x ⋅ y = 1⟩⟩ can be Skolemized as
⟨∀x, z x = z ∨ x ⋅ f(x) = 1⟩
⟨∀x, z ⟨∃y x = z ∨ x ⋅ y = 1⟩⟩
⟨∀x, z x = z ∨ x ⋅ f(x, z) = 1⟩

or we can convert to PNF
and then Skolemize

Corollary: For any FO φ, we can find an existential ψ in an expanded
language such that φ is valid iff ψ is valid (use ¬φ in above Theorem).

Theorem: For any FO φ, we can find a universal ψ in an expanded language
such that φ is satisfiable iff ψ is satisfiable. (From last slide)

is not equisatisfiable

order matters!

