Lecture 12

Pete Manolios Northeastern

Computer-Aided Reasoning, Lecture 12

First Order Logic

- Example: Group Theory
 - (G1) For all x, y, z: $(x \cdot y) \cdot z = x \cdot (y \cdot z)$
 - (G2) For all x: $x \cdot e = x$
 - (G3) For all x there is a y such that: $x \cdot y = e$
- Theorem: For every x, there is a y such that $y \cdot x = e$
- Examples of groups: Nat, +, 0?; Int, +, 0?, Real, *, 1?
- ▶ Proof:
 - By (G3) there is: a y s.t. $x \cdot y = e$ and a z s.t. $y \cdot z = e$

Now: $y \cdot x = y \cdot x \cdot e = y \cdot x \cdot y \cdot z = y \cdot e \cdot z = y \cdot z = e$

- Is this true for all groups? Why?
- How many groups are there?
- Are there true statements about groups with no proof?

First Order Logic

- First Order Logic forms the foundation of mathematics
- We study various objects, e.g., groups
- Properties of objects captured by "non-logical" axioms
 - ▶ (G1-G3 in our example)
- Theory consists of all consequences of "non-logical" axioms
 - Derivable via logical reasoning alone
 - That's it; no appeals to intuition
- Separation into non-logical axioms logical reasoning is astonishing: all theories use exactly same reasoning
- ▶ But, what is a proof ($\Phi \vdash \phi$)?
- Question leads to computer science
- Proof should be so clear, even a machine can check it

First Order Logic: Syntax

- Every FOL (first order language) includes
 - ▶ Variables v₀, v₁, v₂, ...
 - ▶ Boolean connectives: ∨, ¬
 - Equality: =
 - Parenthesis: (,)
 - Quantifiers: 3
- The symbol set of a FOL contains (possibly empty) sets of
 - relation symbols, each with an arity > 0
 - function symbols, each with an arity > 0
 - constant symbols
- Example: groups 2-ary function symbol and constant e
- Set theory: ∈, a 2-ary relation symbol, …

First Order Logic: Terms

- Terms denote objects of study, e.g., group elements
- The set of S-terms is the least set closed under:
 - Every variable is a term
 - Every constant is a term
 - ▶ If $t_1, ..., t_n$ are terms and f is an n-ary function symbol, then $f(t_1, ..., t_n)$ is a term

First Order Logic: Formulas

- Formulas: statements about the objects of study
- An atomic formula of S is
 - ▶ $t_1 = t_2$ or
 - ▶ $R(t_1, ..., t_n)$, where t_i is an S-term and R is an *n*-ary relation symbol in S
- The set of S-formulas is the least set closed under:
 - Every atomic formula is a formula
 - If φ, ψ are S-formulas and x is a variable, then ¬φ, (φ ∨ ψ), and ∃xφ are S-formulas
- \blacktriangleright All Boolean connectives can be defined in terms of \neg and \lor
- We can define ∀xφ to be ¬∃x¬φ

Definitions on Terms & Formulas

- Define the notion of a free variable for an S-formula
- ▶ The definition of formula depends on that of term
- ▹ So, we're going to need an auxiliary definition:

```
var(x) = \{x\}
```

var(*c*) = {}

```
var(f(t_1, ..., t_n)) = var(t_1) \cup \cdots \cup var(t_n)
```

▶ Is this a definition? (termination!)

```
free(t_1 = t_2) = var(t_1) \cup var(t_2)
```

```
free(R(t_1, ..., t_n)) = var(t_1) \cup \cdots \cup var(t_n)
```

```
free(\neg \phi) = free(\phi)
```

 $free((\phi \lor \psi)) = free(\phi) \cup free(\psi)$

```
free(\exists x \phi) = free(\phi) \setminus \{x\}
```

Semantics of First Order Logic

- ▶ What does $\exists v_0 R(v_0, v_1)$ mean?
- ▶ It depends on:
 - What R means (what relation over what domain?)
 - What v₁ means (what element of the domain?)
- ▶ What if the is domain \mathbb{N} , R is <, and v_1 is 1? If v_1 is 0?
- An S-interpretation $\mathcal{J} = \langle A, a, \beta \rangle$ where ($\langle A, a \rangle$ is an S-structure)
 - A is a non-empty set (domain or universe)
 - a is a function with domain S
 - ▶ β : Var → A is an assignment
 - ▶ If $c \in S$ is a constant, then $a.c \in A$
 - ▶ If $f \in S$ is an *n*-ary function symbol, then $a.f : A^n \rightarrow A$
 - ▶ If $R \in S$ is an *n*-ary relation symbol, then $a.R \subseteq A^n$

Meaning via Interpretations

▶ The meaning of a term in an interpretation $\mathcal{J} = \langle A, a, \beta \rangle$

- If $v \in Var$, then $\mathcal{J}.v = \beta.v$
- If $c \in S$ is a constant, then $\mathcal{J}.c = a.c$
- ▶ If $f(t_1, ..., t_n)$ is a term, then $\mathcal{J}(f(t_1, ..., t_n))$ is $(a.f)(\mathcal{J}.t_1, ..., \mathcal{J}.t_n)$
- What it means for an interpretation to satisfy a formula:
 - $\mathcal{J} \vDash (t_1 = t_2) \text{ iff } \mathcal{J}.t_1 = \mathcal{J}.t_2$
 - $\blacksquare \mathcal{J} \vDash R(t_1, ..., t_n) \text{ iff } \langle \mathcal{J}.t_1, ..., \mathcal{J}.t_n \rangle \in a.R$
 - ▶ $\mathcal{J} \models \neg \varphi$ iff not $\mathcal{J} \models \varphi$
 - ▶ $\mathscr{J} \vDash (\varphi \lor \psi)$ iff $\mathscr{J} \vDash \varphi$ or $\mathscr{J} \vDash \psi$
 - ▶ $\mathscr{J} \vDash \exists x \varphi$ iff for some $b \in A$, $\mathscr{J}(x \leftarrow b) \vDash \varphi$

Models & Consequence

- ▶ Let Φ be a set of formulas and ϕ a formula
- ▶ $\mathscr{J} \models \Phi$ (\mathscr{J} is a model of Φ) iff for every $\varphi \in \Phi$, $\mathscr{J} \models \varphi$
- ▶ $\Phi \models \varphi$ (φ is a consequence of Φ) iff for every interpretation, \mathcal{J} , which is a model of Φ , we have that $\mathcal{J} \models \varphi$
- ▶ ϕ is *valid* iff $\emptyset \models \phi$, which we write as $\models \phi$
- A formula φ is satisfiable, written Sat φ, iff there is an interpretation which is a model of φ
- A set of formulas Φ is satisfiable (Sat Φ), iff there is an interpretation which is a model of all the formulas in Φ

Examples

- ▷ Consider symbol sets $S_{ar} := \{+, \cdot, 0, 1\}$ and $S_{ar} := \{+, \cdot, 0, 1, <\}$
- ▶ *N* denotes the *S*_{ar}-structure $\langle \omega, +^{\omega}, \cdot^{\omega}, 0^{\omega}, 1^{\omega} \rangle$, where $+^{\omega}, \cdot^{\omega}, 0^{\omega}, 1^{\omega}$ correspond to $+, \cdot, 0, 1$ on ω
- ▶ *N*[<] denotes the *S*_{*ar*}[<]-structure $\langle \omega, +^{\omega}, \cdot^{\omega}, 0^{\omega}, 1^{\omega}, <^{\omega} \rangle$, where $<^{\omega}$ corresponds to < on ω
- ▶ *R* denotes the S_{ar} -structure $\langle R, +^R, \cdot^R, 0^R, 1^R \rangle$, where R is the set of real numbers
- ▶ $R^{<}$ denotes the $S_{ar^{<}}$ -structure $\langle R, +^{R}, \cdot^{R}, 0^{R}, 1^{R}, <^{R} \rangle$, where $+^{R}, \cdot^{R}, 0^{R}, 1^{R}$, $<^{R}$ correspond to $+, \cdot, 0, 1, <$ on R
- ► +^R and +^ω are very different objects, but we will drop the subscripts when (we think) no ambiguity will arise

SAT & Validity

- ▶ Lemma: For all ϕ , Φ : $\Phi \models \phi$ iff not Sat ($\Phi \cup \{\neg\phi\}$)
- ▶ Proof $\Phi \models \varphi$
 - iff for all $\mathcal{J}, \mathcal{J} \models \Phi$ implies $\mathcal{J} \models \varphi$
 - iff there is no \mathcal{J} such that $\mathcal{J} \vDash \Phi$ but not $\mathcal{J} \vDash \varphi$
 - iff there is no \mathscr{J} such that $\mathscr{J} \models \Phi \cup \{\neg \varphi\}$
 - iff not Sat $\Phi \cup \{\neg \varphi\}$
- ▶ As a consequence, ϕ is valid iff $\neg \phi$ is not satisfiable