
Lecture 11

Pete Manolios

Northeastern

Computer-Aided Reasoning, Lecture 11

Slides by Pete Manolios for CS4820

BDDs and Decision Trees
A BDD on x1, …, xn is a DAG G=(V, E) where

exactly 1 vertex has indegree 0 (the root)

all vertices have outdegree 0 (leaves) or 2 (inner nodes)

the inner nodes are labeled from {x1, …, xn}

the leaves are labeled from {0, 1}

one of the edges from an inner node is labeled by 0; the other by 1

The BDD G=(V, E) represents a Boolean function, say f

for any assignment A in Bn, f(A) is computed recursively from root

if we reach a leaf, return the label

for inner nodes, say labeled with xi, take the edge labeled by A(xi)

A decision tree is a BDD whose graph is a tree

A BDD is an OBDD if there is a permutation on p={1,2, …, n} s.t. for all edges (u,
v) in E, where u, v are labeled by xi, xj, we have that pi < pj

An OBDD is an ROBDD if it has no isomorphic subgraphs and all children are
distinct

Images from Wikipedia

Slides by Pete Manolios for CS4820

BDDs and Decision Trees

Images from Wikipedia

Decision Tree for f ROBDD for f

How do we generate DNF from a decision tree? ROBDD?

Slides by Pete Manolios for CS4820

BDDs
Decision trees are widely used, e.g., in machine learning (ID3, C4.5, …)

BDDs are widely used (BDD usually means ROBDD)

Popularized by Bryant

Very efficient algorithms for constructing, manipulating BDDs

Used in verification, synthesis, fault trees, security, AI, model checking, static analysis, …

Bryant’s paper was the most cited research paper (at some point)

Many BDD packages available

Once a variable ordering is selected, BDDs are canonical!

Construct decision tree using Shannon expansion and merge isomorphic nodes, remove
nodes who children are equal until you reach a fixpoint

To see, this note that BDDs are essentially DFA that recognize strings in {0,1}n and such
automata can be minimized (note nodes with equal children remain)

So, checking equality is just pointer equality (with appropriate data structures)

Can be used for model checking: represent set of reachable states & transition system with
BDDs

Bryant, Clarke, Emerson & McMillan got 1998 Paris Kanellakis Award for symbolic model
checking

Slides by Pete Manolios for CS4820

Variable Ordering for BDDs

Images from Wikipedia

Bad Ordering Good Ordering

Variable ordering matters: find the best ordering is hard.

Slides by Pete Manolios for CS4820

DP SAT Algorithm
Davis Putnam (1960)

Input: CNF formula

Output: SAT/UNSAT

Idea: apply three rules until

Derive the empty clause: UNSAT (identity of v is false)

No clauses remain: SAT (identity of ∧ is true)

Three “rules”

Pure literal rule (affirmative-negative rule)

Unit resolution rule (unit propagation, BCP, 1-literal rule)

Resolution (Called consensus, also used for logic minimization)

Slides by Pete Manolios for CS4820

Pure Literal Rule

Given a F, a set of clauses and literal ℓ such

ℓ appears in F

¬ℓ does not appear in F

remove all clauses containing ℓ

Equisatisfiable because we can make ℓ true

Notice that this always simplifies F

Modern SAT solvers tend to not use the rule (efficiency)

Slides by Pete Manolios for CS4820

Boolean Constraint Propagation

BCP: given a set of clauses including {ℓ}

remove all other clauses containing ℓ (subsumption)

remove all occurrences of ¬ℓ in clauses (unit resolution)

repeat until a fixpoint is reached

Unit resolution rule:

C, ¬ℓ ℓ

C

Slides by Pete Manolios for CS4820

Resolution

Soundness of rule: above line implies below line

If below line is SAT, so is above line (w/ side conditions)

Resolution rule:

C, v D, ¬v

C, D

¬v,v ∉ C,D

Slides by Pete Manolios for CS4820

Resolution

Soundness of rule: above line implies below line

If below line is SAT, so is above line (w/ side conditions)

Given literal p, set of clauses S, let P be the clauses in S that contain p
only positively and let N be the clauses that contain p only negatively.
Let E be the rest of the clauses. Then S is sat iff S’ = E U the set of all
p-resolvents of P and N.

Proof: If A is an assignment for S, then if A(p)=true, all clauses in N,
with ¬p removed are satisfied, so each p-resolvent is satisfied. Similarly
if A(p)=false. If A is an assignment for S’, then it satisfies all Ci or all Di:
suppose it doesn’t satisfy Ck, then it must satisfy all Di. If it satisfies all
Ci, let A’(p)=false, else A’(p)=true and A’(x)=A(x) otherwise.

Resolution rule:

C, v D, ¬v

C, D

¬v,v ∉ C,D

Resolution rule:

Ci, p Di, ¬p

Ci, Di

¬p ∉ Ci ∈ P ,p ∉ Di ∈ N

Slides by Pete Manolios for CS4820

DP SAT Algorithm
Input: CNF formula, Output: SAT/UNSAT

Base case: empty clause: UNSAT

Base case: no clauses: SAT

Apply these two rules until fixpoint

Pure literal rule

BCP

Choose var, say x, perform all possible resolutions, remove trivial
clauses and clauses containing x

Repeat

Existentially quantify variables, one at a time

Problem: space blow-up

Slides by Pete Manolios for CS4820

DPLL SAT Algorithm
BCP

Base case: empty clause: UNSAT

Remove clauses containing pure literals

Base case: no clauses: SAT

Choose some var, say x (has to appear in both phases)

Add {x} and recursively call DPLL

Add {¬x} and recursively call DPLL

If one of the calls returns SAT, return SAT

Else return UNSAT

Correctness follows from Shannon expansion

In contrast to DP, space is not a problem

Slides by Pete Manolios for CS4820

DPLL SAT Example

Note that when DPLL detects contradictions it backtracks chronologically

When we get a contradiction with X, we try ¬X, then we go back and try ¬C and X, ¬X again, …

But the real problem was that we set A; can we avoid this exponential search?

Yes: non-chronological backtracking, a major improvement

Examples/figures from chp. 3 SAT handbook

Slides by Pete Manolios for CS4820

Implication Graphs

Nodes are l/V=v: var V set to v @ level l

If node implied, justification recorded
(clause #, edges from assignments)

{} denotes contradiction

Slides by Pete Manolios for CS4820

Conflict-Driven Clauses

Consider any cut of the implication graph that separates decision vars from {}

The nodes with an edge that crosses the cut are in conflict set

Negate the assignments in the set to obtain a conflict-driven clause

Conflict clauses: Cut1: {¬A,¬X}, Cut2: {¬A, ¬Y}, Cut3: {¬A, ¬Z, ¬Y}

Conflict–driven clauses generated from cuts that contain exactly one variable
assigned at the level of conflict are said to be asserting: Cut1 & Cut2 (not Cut 3)

Slides by Pete Manolios for CS4820

Non-Chronological Backtracking

Asserting conflict clauses: Cut1: 8. {¬A,¬X}, Cut2: {¬A, ¬Y}

Assertion level: 2nd highest level in asserting clause (0 for cuts 1, 2) or -1

Backtrack to assertion level and add a learned clause (non-chronological!)

We can now immediately infer (BCP) ¬X (we use Cut1), so we have A, ¬X

Then by BCP: Z (4), ¬Z (6) so we get a new implication graph

Asserting clauses: {¬A} at level -1, so we have ¬A, BCP: B and we’re done

Compare to previous search, where the algorithm had to go back a level at a time

Clause learning can generate exponentially shorter proofs of unsat!

Slides by Pete Manolios for CS4820

Based on DPLL, but with conflict-driven clause learning

Data structures to speed up BCP: 2-watched literal scheme

Data structures for clause learning

Decision heuristics: select recently active literals (VSIDS)

Preprocessing: greedy variable elimination

Inprocessing: interleave preprocessing & search

Clause deletion: learned clauses lead to memory & efficiency
problems, so delete large, inactive clauses

Random restarts: keep learned clauses, but restart

avoids getting stuck in hard part of search space

phase saving: pick last phase of assignment

Modern CDCL Solvers

