Lecture 11

Pete Manolios Northeastern

Computer-Aided Reasoning, Lecture 11

BDDs and Decision Trees

- A BDD on x_{1}, \ldots, x_{n} is a DAG $G=(V, E)$ where
- exactly 1 vertex has indegree 0 (the root)
- all vertices have outdegree 0 (leaves) or 2 (inner nodes)
- the inner nodes are labeled from $\left\{\mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{n}}\right\}$
- the leaves are labeled from $\{0,1\}$
- one of the edges from an inner node is labeled by 0 ; the other by 1
* The BDD G=(V, E) represents a Boolean function, say f
- for any assignment A in $B^{n}, f(A)$ is computed recursively from root
* if we reach a leaf, return the label
- for inner nodes, say labeled with x_{i}, take the edge labeled by $\mathrm{A}\left(\mathrm{x}_{\mathrm{i}}\right)$

- A decision tree is a BDD whose graph is a tree
- A BDD is an OBDD if there is a permutation on $p=\{1,2, \ldots, n\}$ s.t. for all edges (u, v) in E, where u, v are labeled by x_{i}, x_{j}, we have that $p_{i}<p_{j}$
- An OBDD is an ROBDD if it has no isomorphic subgraphs and all children are distinct

Images from Wikipedia

BDDs and Decision Trees

Decision Tree for f

ROBDD for f

How do we generate DNF from a decision tree? ROBDD?

Images from Wikipedia

BDDs

- Decision trees are widely used, e.g., in machine learning (ID3, C4.5, ...)
- BDDs are widely used (BDD usually means ROBDD)
- Popularized by Bryant
- Very efficient algorithms for constructing, manipulating BDDs
- Used in verification, synthesis, fault trees, security, AI, model checking, static analysis, ...
- Bryant's paper was the most cited research paper (at some point)
- Many BDD packages available
* Once a variable ordering is selected, BDDs are canonical!
- Construct decision tree using Shannon expansion and merge isomorphic nodes, remove nodes who children are equal until you reach a fixpoint
- To see, this note that BDDs are essentially DFA that recognize strings in $\{0,1\} \mathrm{n}$ and such automata can be minimized (note nodes with equal children remain)
- So, checking equality is just pointer equality (with appropriate data structures)
- Can be used for model checking: represent set of reachable states \& transition system with BDDs
- Bryant, Clarke, Emerson \& McMillan got 1998 Paris Kanellakis Award for symbolic model checking

Variable Ordering for BDDs

Variable ordering matters: find the best ordering is hard.

0

Bad Ordering

Good Ordering

Images from Wikipedia

DP SAT Algorithm

- Davis Putnam (1960)
- Input: CNF formula
- Output: SAT/UNSAT
- Idea: apply three rules until
- Derive the empty clause: UNSAT (identity of v is false)
- No clauses remain: SAT (identity of \wedge is true)
- Three "rules"
- Pure literal rule (affirmative-negative rule)
- Unit resolution rule (unit propagation, BCP, 1-literal rule)
- Resolution (Called consensus, also used for logic minimization)

Pure Literal Rule

- Given a F, a set of clauses and literal ℓ such
- ℓ appears in F
- \neg l does not appear in F
- remove all clauses containing ℓ
- Equisatisfiable because we can make ℓ true
- Notice that this always simplifies F
- Modern SAT solvers tend to not use the rule (efficiency)

Boolean Constraint Propagation

Unit resolution rule:
C, \neg l \quad l
C

- BCP: given a set of clauses including $\{\ell\}$
- remove all other clauses containing ℓ (subsumption)
- remove all occurrences of $\neg \ell$ in clauses (unit resolution)
- repeat until a fixpoint is reached

Resolution

Resolution rule:
$\frac{C, v \quad D, \neg v}{C, D} \neg v, v \notin C, D$

- Soundness of rule: above line implies below line
- If below line is SAT, so is above line ($\mathrm{w} /$ side conditions)

Resolution

Resolution rule:
$\frac{C, v}{C, D} \quad D, \neg v\left(\neg v, v \notin C, D \quad \frac{C_{i}, p}{C_{i}, D_{i}} \quad D_{i}, \neg p\right) ~ \neg p \notin C_{i} \in P, p \notin D_{i} \in N$

- Soundness of rule: above line implies below line
- If below line is SAT, so is above line ($\mathrm{w} /$ side conditions)
* Given literal p, set of clauses S, let P be the clauses in S that contain p only positively and let N be the clauses that contain p only negatively. Let E be the rest of the clauses. Then S is sat iff $\mathrm{S}^{\prime}=\mathrm{E} \mathrm{U}$ the set of all p -resolvents of P and N .
- Proof: If A is an assignment for S, then if $A(p)=$ true, all clauses in N, with $\neg p$ removed are satisfied, so each p-resolvent is satisfied. Similarly if $A(p)=$ false. If A is an assignment for S^{\prime}, then it satisfies all Ci or all Di: suppose it doesn't satisfy Ck, then it must satisfy all Di. If it satisfies all Ci , let $\mathrm{A}^{\prime}(\mathrm{p})=$ false, else $\mathrm{A}^{\prime}(\mathrm{p})=$ true and $\mathrm{A}^{\prime}(\mathrm{x})=\mathrm{A}(\mathrm{x})$ otherwise.

DP SAT Algorithm

- Input: CNF formula, Output: SAT/UNSAT
- Base case: empty clause: UNSAT
- Base case: no clauses: SAT
- Apply these two rules until fixpoint
- Pure literal rule
- BCP
- Choose var, say x, perform all possible resolutions, remove trivial clauses and clauses containing x
- Repeat
- Existentially quantify variables, one at a time
- Problem: space blow-up

DPLL SAT Algorithm

- BCP
- Base case: empty clause: UNSAT
* Remove clauses containing pure literals
- Base case: no clauses: SAT
* Choose some var, say x (has to appear in both phases)
- Add $\{x\}$ and recursively call DPLL
- Add $\{\neg x\}$ and recursively call DPLL
- If one of the calls returns SAT, return SAT
- Else return UNSAT
- Correctness follows from Shannon expansion
* In contrast to DP, space is not a problem

DPLL SAT Example

$$
\begin{aligned}
& \text { 1. }\{A, B\} \\
& \text { 2. }\{B, C\} \\
& \Delta= \text { 3. }\{\neg A, \neg X, Y\} \\
& \text { 4. }\{\neg A, X, Z\} \\
& \text { 5. }\{\neg A, \neg Y, Z\} \\
& \text { 6. }\{\neg A, X, \neg Z\} \\
& \text { 7. }\{\neg A, \neg Y, \neg Z\}
\end{aligned}
$$

- Note that when DPLL detects contradictions it backtracks chronologically
- When we get a contradiction with X, we try $\neg X$, then we go back and try $\neg C$ and $X, \neg X$ again, \ldots
- But the real problem was that we set A; can we avoid this exponential search?
- Yes: non-chronological backtracking, a major improvement

Examples/figures from chp. 3 SAT handbook

Implication Graphs

- Nodes are I/V=v: var V set to v @ level I
- If node implied, justification recorded (clause \#, edges from assignments)
- $\}$ denotes contradiction

$$
\begin{aligned}
& \text { 1. }\{A, B\} \\
& \text { 2. }\{B, C\} \\
& \text { 3. }\{\neg A, \neg X, Y\} \\
& \Delta= \text { 4. }\{\neg A, X, Z\} \\
& \text { 5. }\{\neg A, \neg Y, Z\} \\
& \text { 6. }\{\neg A, X, \neg Z\} \\
& \text { 7. }\{\neg A, \neg Y, \neg Z\}
\end{aligned}
$$

Conflict-Driven Clauses

$$
\begin{aligned}
& \text { 1. }\{A, B\} \\
& \text { 2. }\{B, C\} \\
& \Delta= \text { 3. }\{\neg A, \neg X, Y\} \\
& \text { 4. }\{\neg A, X, Z\} \\
& \text { 5. }\{\neg A, \neg Y, Z\} \\
& \text { 6. }\{\neg A, X, \neg Z\} \\
& \text { 7. }\{\neg A, \neg Y, \neg Z\}
\end{aligned}
$$

* Consider any cut of the implication graph that separates decision vars from $\}$
* The nodes with an edge that crosses the cut are in conflict set
- Negate the assignments in the set to obtain a conflict-driven clause
- Conflict clauses: Cut1: $\{\neg A, \neg X\}$, Cut2: $\{\neg A, \neg Y\}$, Cut3: $\{\neg A, \neg Z, \neg Y\}$
- Conflict-driven clauses generated from cuts that contain exactly one variable assigned at the level of conflict are said to be asserting: Cut1 \& Cut2 (not Cut 3)

Non-Chronological Backtracking

- Asserting conflict clauses: Cut1: 8. \{ᄀA, ᄀX\}, Cut2: $\{\neg A, \neg Y\}$
- Assertion level: 2nd highest level in asserting clause (0 for cuts 1, 2) or -1
- Backtrack to assertion level and add a learned clause (non-chronologica!!)
- We can now immediately infer (BCP) $\neg \mathrm{X}$ (we use Cut1), so we have $A, \neg X$
- Then by BCP: Z (4), $\neg Z$ (6) so we get a new implication graph
- Asserting clauses: $\{\neg A\}$ at level -1 , so we have $\neg A, B C P$: B and we're done
- Compare to previous search, where the algorithm had to go back a level at a time
- Clause learning can generate exponentially shorter proofs of unsat!

Modern CDCL Solvers

- Based on DPLL, but with conflict-driven clause learning
- Data structures to speed up BCP: 2-watched literal scheme
- Data structures for clause learning
- Decision heuristics: select recently active literals (VSIDS)
- Preprocessing: greedy variable elimination
- Inprocessing: interleave preprocessing \& search
- Clause deletion: learned clauses lead to memory \& efficiency problems, so delete large, inactive clauses
- Random restarts: keep learned clauses, but restart
- avoids getting stuck in hard part of search space
* phase saving: pick last phase of assignment

