
DrACuLa: ACL2 in DrScheme

Dale Vaillancourt Rex Page Matthias Felleisen

ACL2 Workshop August 16, 2006 1

Undergraduate Software Engineering

Page teaches two SE courses at Oklahoma U.
• Covers usual topics - specification, documentation, time

management, teamwork, code reviews, defect control, etc.
• Special emphasis on specification and defect control using logic.

2

Undergraduate Software Engineering

Two typical course projects:
• Read in an image file, rotate it, flip it write a new file.

Prove (equal (rotate image 360)
image)

Prove (equal (flip (flip image))
image)

• Read in stock market data, compute statistics. Prove arithmetic
properties.

3

Undergraduate Software Engineering

Overall, good results
• Student course evaluations are (mostly) positive
• Industry observers like what they see in code reviews.

4

Three Problems Recur

• ACL2 environment is unfriendly & overwhelming.
• Projects need to engage students.

Text based exercises are too small and boring.
Current projects are not representative of what students will
work on in the future.

• Students are new to (functional) program design.
Corollary: Students therefore have trouble reasoning and
proving theorems about their programs.

5

Our Proposal

• Build a student friendly ACL2 environment: Dracula.
• Environment should support development of graphical interactive

software.
• Integrate program design into curriculum (longer term goal).

6

Dracula: A Student Friendly ACL2 Environment

7

A Friendly Reminder

• DrScheme & associated pedagogy represent over a decade of
research and experience on friendly programming environments.

• Dracula is built on top of DrScheme.
• See section 2 of paper for more background on DrScheme.

8

Being Friendly

• Smaller language => improved error messages.
• Graphically connect errors to the program source.
• Use a simple GUI to control the environment.

9

Dracula's ACL2 Language

Provided forms:
• defun, defconst, defthm

• cond, and, or, if

• defstructure, deflist

• let, quote

Provides all documented primitive procedures.

10

Guard Errors

11

Guard Errors

12

Short Demonstration

13

Developing Interactive, Graphical Programs
(Functionally!)

14

Structure of an Interactive Program

Consider a simple counter program.

15

Represent automaton as an ACL2 program

; An Action is either 'left or 'right

; A World is an integer

; transition : World Action → World
(defun transition (a-world action)
 (case action
 ((left) (1- a-world))
 ((right) (1+ a-world))))

16

Tick Tock

Suppose we want the counter to increment automatically with a
given clock period.

17

Counter Program v.2

; A World is a Natural Number

; Transition function
; tick : World -> World
(defun tick (w) (1+ w))

18

Making it run

We must also specify how to render each world:
; render-world : World -> Image
; produce an image of the given world
(defun render-world (the-world)
 (text (int->string the-world) *size* *color*))

And we get the ball rolling with a few macro invocations:
(big-bang *width* *height*

clock-period *initial-world*)
(on-key-event transition)
(on-tick-event tick)
(on-redraw render-world)

19

A Little Fancier: Worm

20

Representing the Worm

; A Segment is (segment natural natural)
(defstructure segment x y)
(defconst *segment-diameter* 10)

; Velocity is in '(up down left right)

; A Worm is (worm segment Velocity segment-list)
(defstructure worm head velocity tail)

But, not just any head and segment-list will do.

21

Reasoning about GUI Programs
Use the transition functions

; worm-well-formed? : any → Boolean
; Is the given object a well-formed worm?
(defun worm-well-formed? (w)
 (consecutive-pairs-adjacent?

(cons (worm-head w) (worm-tail w))))

(defthm initial-worm-well-formed
 (worm-well-formed? *initial-worm*))

(defthm worm-move-preserves-well-formedness
 (implies (worm-well-formed? w)

(worm-well-formed? (worm-move w))))

Requires fewer than 10 lemmas.

22

Classroom Experience

23

A Subjective Survey

Last Fall - Page's SE I students used ACL2 via the console and their
favorite editor.
Last Spring - same students used Dracula in SE II.

Page surveyed SE II class in April to get their thoughts on Dracula.

24

Survey says...

• Students like Dracula's error reporting.
• Students like developing GUI software in Dracula.
• Students like Dracula's GUI to the theorem prover.

• Students identified a couple weaknesses in Dracula's
implementation.

• Students want a debugger for Dracula.

• Instructor liked Dracula too. More details in paper.

25

Looking Ahead

26

Future Work

• Modules
for Dracula
for ACL2

• Formalize the World Teachpack framework
• Port the HtDP pedagogy to ACL2 program design.

27

What is a module?

A module is a collection of definitions and expressions (not
necessarily closed).

Desideratum: A module can be developed and reasoned about in the
absence of implementation modules upon which it may depend.

Two benefits:
• Namespace management - module authors opt to hide certain

names (definitions).
• Separate reasoning - programmers can reason about their modules

without looking at their colleagues' code (just need a spec).

28

Module example

; Specification for insert:
(defthm insert-spec
 (implies (and (integerp x)

(ordered-integer-listp lst))
(ordered-integer-listp
(insert x lst))))

(module sort
 (require insert)
 (defun sort (lst)
 (if (endp lst)

'()
 (insert (first lst)

(sort (rest lst)))))
 (defthm sort-theorem
 (ordered-integer-listp (sort lst))))

29

ACL2 lacks modules

Puzzle: Provide g but hide helper.

(defun helper (x) (+ x 2))
(defun g (x) (helper (helper x)))

• include-book, encapsulate, and local will not do the trick.

• Packages do not suffice. Clients gets to decide which names to
"hide" when building packages.

30

Dracula's Modules

(module insert
 (provide/spec insert

[integerp ordered-integer-listp
-> ordered-integer-listp])

 (define insert (x lst) ...))

(module sort
 (require insert)
 (define sort (lst)
 ... (insert (first lst)

(sort (rest lst)))
 ...))

31

Formalizing the World Teachpack

There is still a logical disconnect between World-based programs
and the actual behavior of the program.

32

HtDP

33

Data Definition

Suppose we want to design function to sort integer lists. Structure of
code follows structure of data.

An integer-list is either

• nil, or

• (cons integer integer-list)

34

Design Recipe for Sorting

Problem: Design a function that sorts a given list of integers.

35

Design Recipe for Sorting

Problem: Design a function that sorts a given list of integers.
; sort : int-list → int-list
; sort the given list
(defun sort (alon)
 ...)

36

Design Recipe for Sorting

Problem: Design a function that sorts a given list of integers.
; sort : int-list → int-list
; sort the given list
(defun sort (alon)
 ...)

(equal (sort nil) nil)
(equal (sort '(3 2 1)) '(1 2 3))

37

Design Recipe for Sorting

Problem: Design a function that sorts a given list of integers.
; sort : int-list → int-list
; sort the given list
(defun sort (alon)
 (cond ((endp alon) ...)

((consp alon)
... (first alon) ...
 ... (rest alon) ...
 ... (sort (rest alon)) ...)))

(equal (sort nil) nil)
(equal (sort '(3 2 1)) '(1 2 3))

38

Design Recipe for Sorting

Problem: Design a function that sorts a given list of integers.
; sort : int-list → int-list
; sort the given list
(defun sort (alon)
 (cond ((endp alon) nil)

((consp alon)
... (first alon) ...
 ... (rest alon) ...
 ... (sort (rest alon)) ...)))

(equal (sort nil) nil)
(equal (sort '(3 2 1)) '(1 2 3))

39

Design Recipe for Sorting

Problem: Design a function that sorts a given list of integers.
; sort : int-list → int-list
; sort the given list
(defun sort (alon)
 (cond ((endp alon) nil)

((consp alon)
(insert (first alon)

(sort (rest alon))))))

(equal (sort nil) nil)
(equal (sort '(3 2 1)) '(1 2 3))

40

Proving a Theorem

; Prove half the correctness for sort

41

Proving a Theorem

; Prove half the correctness for sort
(defthm sort-produces-an-ordered-list
 (ordered? (sort a-list)))

42

Proving a Theorem

; Prove half the correctness for sort
(defthm sort-produces-an-ordered-list
 (ordered? (sort a-list)))

(ordered? (sort nil))
(ordered? (sort '(3 2 1)))

43

Proving a Theorem

; Prove half the correctness for sort
(defthm sort-produces-an-ordered-list
 (ordered? (sort a-list)))

(ordered? (sort nil))
(ordered? (sort '(3 2 1)))

Induction on a-list leads to:

(defthm insert-preserves-ordered?
 (implies (and (number? num)

(ordered? a-list))
(ordered? (insert num a-list))))

44

Proving a Theorem

; Prove half the correctness for sort
(defthm sort-produces-an-ordered-list
 (ordered? (sort a-list)))

(ordered? (sort nil))
(ordered? (sort '(3 2 1)))

Induction on a-list leads to:

(defthm insert-preserves-ordered?
 (implies (and (number? num)

(ordered? a-list))
(ordered? (insert num a-list))))

45

Design Recipe & The Method

Design Recipe:
• Data Definition
• Contract & Purpose
• Examples
• Template
• Implementation
• Tests

The Method:
• Purpose
• Conjecture
• Test
• Attempt Proof
• Discover Lemmas
• Complete Proof

Not the same, but similar in spirit!

46

Wrapping up

47

Related Work

Dracula's GUI is inspired by that found in systems such as:
• CoqIDE
• ProofGeneral

ACL2s - Eclipse-based environment by Dillinger, Manolios, & Vroon

48

Implementation

Dracula is a plug-in for DrScheme.
• Translates Lisp to Scheme using PLT Scheme macros.
• Inherits lots of DrScheme infrastructure automatically.
First prototype took two weeks of my time.
• Documentation, testing, etc. took another few weeks.
• Schedule is realistic for you: I started off knowing only a little bit

about PLT Scheme macros and DrScheme's extension API.

49

Thank You
http://www.ccs.neu.edu/~dalev/acl2/

50

Formalizing Images

An ACL2 book specifies a new datatype of images.
Graphical functions are constrained to consume / produce images.

(defthm image?-predicate
 (booleanp (image? X)))

(defthm image?-distinct
 (implies (image? X)

(and (not (symbolp X))
(not (consp X))

 ...)))
(defthm circle-is-an-image
 (image? (circle radius color fill)))
...

Specification is weak, but no matter.

51

