
Theorems About Programming Languages in
ACL2

Sol Swords William Cook
{sswords,wcook}@cs.utexas.edu

Department of Computer Science
University of Texas at Austin

ACL2 Workshop, FLoC 2006

Outline

1 Introduction: Mechanizing Programming Language
Metatheory

2 Representing terms, types, and other structures

3 Directing Proofs

4 Further Questions

Proofs about Programming Languages?

What might we want to prove about a programming language?

• Our running example: A well-typed program in the
simply-typed λ-calculus with booleans will never get stuck.

• Well-typed programs always terminate.

• The subtyping relation is transitive.

• . . .

Such properties can be surprisingly difficult to prove even when
they seem intuitively obvious.

• Proofs are typically complex inductions, either over
syntactic forms or sets of rules.

• Most subcases are easy but tedious.

• Adding language features leads to more and more
subcases.

Challenges for mechanization

The fact that proofs are large and tedious suggests the use of a
theorem prover. Problems to face:

• Most proofs have a few hard parts that require significant
ingenuity, requiring user interaction.

• Some ideas are easy to gloss over in hand proofs but
difficult to formalize.

• Example: variable binding. In hand proofs, it is assumed
that all variable names are unique; this is difficult to make
explicit for a mechanized proof.

• It is difficult to define complex recursive data structures so
that they can be reasoned about smoothly in ACL2.

Outline

1 Introduction: Mechanizing Programming Language
Metatheory

2 Representing terms, types, and other structures

3 Directing Proofs

4 Further Questions

Representing Terms

• ACL2 users work with simple recursive data structures all
the time: lists, trees.

• Expressions, types, and other syntactic forms must be
represented by more complex structures.

• It is painful to prove theorems about such structures if the
underlying cons representation is exposed.

• Best method: Encapsulate operations in functions and
prove sufficient theorems about them so that they can be
disabled, thus hiding the cons representation.

We introduce the macro defsum which automates these
definitions and proofs.

Example: Types in the λ-calculus

Syntax of types:

T ::= Bool Boolean
| T → T Function

English:
A type is either the constant Bool or a function type composed
of a domain and range which are both types.

Defsum form for ACL2:

(defsum stype
(BOOL)
(FUN (stype-p domain) (stype-p range)))

Functions defined by defsum

(defsum stype
(BOOL)
(FUN (stype-p domain) (stype-p range)))

Introduces the following functions:

• Sum recognizer: stype-p

• Product recognizers: bool-p , fun-p

• Constructors: bool , fun

• Destructors: fun-domain , fun-range

• Measure: stype-measure

Total: 8 functions.

Theorems proved by defsum

Defsum automatically proves enough theorems about these
functions to allow reasoning about these types without
reference to the underlying cons structure. Examples:

• (fun-p (fun domain range))

• (implies (and (stype-p domain)
(stype-p range))

(stype-p (fun domain range)))

• (equal (fun-domain (fun domain range))
domain)

• (not (equal (fun domain range) range))

• (implies
(not (equal domain (fun-domain x)))
(not (equal (fun domain range) x)))

Total: 35 theorems.

Pattern-match

Pattern-match is a companion macro to defsum allowing ML or
Haskell-style pattern-matching over sum types. Example:

(defun print-stype (x)
(pattern-match x

((BOOL) (cw "bool"))
((FUN a b) (cw "(˜x0) -> (˜x1)"

(print-stype a)
(print-stype b)))))

Pattern-match

Equivalent without pattern-match:

(defun print-stype (x)
(if (bool-p x)

(cw "bool")
(if (fun-p x)

(let ((a (fun-domain x))
(b (fun-range x)))

(cw "(˜x0) -> (˜x1)"
(print-stype a)
(print-stype b)))

nil)))

Each defsum form introduces macros which enable
pattern-match to recognize the newly defined constructors.

Outline

1 Introduction: Mechanizing Programming Language
Metatheory

2 Representing terms, types, and other structures

3 Directing Proofs

4 Further Questions

Theorem example: Preservation

Theorem: Preservation. If an expression x has type T under
typing context Γ, and x evaluates to x ′, then x ′ also has type T
under Γ.
Notes:

• A typing context is an alist mapping free variables to their
assumed types. At top level, we expect there to be no free
variables and we work with the empty context.

• We haven’t shown how to determine whether an
expression has a type.

• We haven’t shown how to determine whether one
expression evaluates to another.

Evaluation and Typing as Functions

We can define evaluation and typing as functions Type(x , Γ)
and Eval(x):

Theorem: Preservation. If Type(x , Γ) = T and Eval(x) = x ′,
then Type(x ′, Γ) = T .

Problems:
• Type and Eval are not functions in every language.

Examples:
• Eval is not a function in nondeterministic languages.
• Type is not a function in languages with subtyping.

• Reasoning about Type and Eval as functions requires
leading the theorem prover by using lots of hints:
frustrating and hard to debug.

For future reference, call this the “direct method” of proving
these theorems.

Evaluation and Typing Derivations

Alternative: Define evaluation and typing relations x x ′ and
Γ ` x : T in terms of the existence of a derivation: an object
which shows which rules are applied when in order to prove
that the relation holds.

Theorem: Preservation. Given derivations of Γ ` x : T and
x x ′, one can construct a derivation of Γ ` x ′ : T .

Proof is simple: Define a function that constructs the derivation
of Γ ` x ′ : T . This function provides the induction scheme and
the structure of the final proof, which is to verify that this
construction is correct if the input derivations are correct.

Direct Method versus Derivation Method

Trade-offs:

• The direct method saves work on the many simple,
obvious, uninteresting cases, but is hard to drive through
the difficult parts.

• Derivation functions provide a direct way of guiding the
prover through difficult cases, but must explicitly specify
the simple cases as well.

• The direct method makes better use of built-in ACL2
heuristics, whereas derivation functions give more
control over the prover.

We completed the proof of the soundness of the simply-typed
λ-calculus using the derivation method; only :induct and
:in-theory hints were used.

Outline

1 Introduction: Mechanizing Programming Language
Metatheory

2 Representing terms, types, and other structures

3 Directing Proofs

4 Further Questions

Questions

• Is there a method with tight control over the prover and
heuristics that plow through the easy parts?

• Can these methods work on larger problems?
• Example: The POPLMark Challenge - prove the transitivity

of the subtyping relation in the language F<:.

• Best way to reason about variable bindings?
• Very problematic in more complex languages, like F<:.
• The current most successful method, Higher Order Abstract

Syntax, is unavailable to ACL2 and other first-order logics.
• Congruences over α-equivalence helpful?

	Introduction: Mechanizing Programming Language Metatheory
	Representing terms, types, and other structures
	Directing Proofs
	Further Questions

