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Introduction� Implemented prototype mechanism for 
extending ACL2 with external tools� Integrated IBM’s SixthSense Verification Tool 
to ACL2� Use SixthSense to verify smaller properties 

automatically.� Use ACL2 to prove problems too difficult to verify 
with SixthSense. � Applied the technique to the verification of an 

industrial multiplier design written in VHDL.
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Outline� Prototype External Tool Mechanism� ACL2SIX: Extending ACL2 with SixthSense� Multiplier Design� Booth Encoder Verification� Compression Verification� Conclusion
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Prototype External Tool Mechanism� A new ACL2 hint that extends the ACL2 
theorem prover with functions that implement� new theorem proving procedures� external tool interfaces� Extension is dynamic� Implemented as program-mode functions� Prototype modifies ACL2 source� Only 57 lines of modification� To-do list entry contains additional features� Allows users to declare trusted clause-processors 
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:External Example
(defun generalize-expr (clause expr new-var state)

(cond
((or (not (symbolp new-var))

(var-in-expr-listp new-var clause))
(mv (list "ERROR: Target must be a new variable~%”)

nil 
state))

(t
(mv nil

(list (substitute-expr-list expr new-var clause))
state))))

(thm (implies (and (natp a) (natp (foo)))
(equal (nthcdr a (nthcdr (foo) x))

(nthcdr (+ a (foo)) x)))
:hints (("Goal" :external (generalize-expr '(foo) 'b))

("Goal'" :induct (nthcdr b x))))
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SixthSense� We use the :external extension mechanism to 
integrate ACL2 with SixthSense� IBM internal verification tool� Operates on a finite-state machine described in 
VHDL.� Uses transformation-based verification approach� BDDs & SAT Solvers� Re-timing engine� Semi-formal counter-example search engine� It formally proves safety properties of FSMs� When a property is found invalid, it returns a 
counter example as a waveform.
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ACL2SIX Flow Chart
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ACL2SIX Extension� There is no ACL2 model of hardware design!� VHDL signals are represented in ACL2 logic with 
function stubs sigbit and sigvec :
(sigbit entity signame cycle phase)

(sigvec entity signame (lbit hbit) cycle phase)� ACL2SIX translates these stubs to the appropriate 
signals in the VHDL design.� Besides sigbit and sigvec , only ACL2VHDL 
primitives, such as bv+ , bv-and , and bv-or can be 
used in the verified property.
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ACL2SIX Example
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(defun add32 ()
‘(add32

(port
(clk :in std_ulogic)
(a :in std_ulogic_vector (0 31))
(b :in std_ulogic_vector (0 31))
(sum :out std_ulogic_vector (0 31)))

(extra-assigns (clk “c0”)))

(defthm adder-adds
(implies

(and (integerp n) (<= 1 n))
(equal 
(bv+ (sigvec (add32) a (0 31) (1- n) 2)

(sigvec (add32) b (0 31) (1- n) 2))
(sigvec (add32) sum (0 31) n 2)))

:hints
((“Goal” :external

(acl2six ((:cycle-expr n)
(:ignore-init-cycles 1))))))

ADD32
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Booth Multiplier� 53bit x 54bit multiplier� Used to compute double-precision floating-point 
multiplication� Written in VHDL� Output consists of two vectors, whose sum is 
equal to its product.� Uses Booth-encoding algorithm, with a number 
of carry-save adder stages.  � Sixthsense cannot verify entire system, or even 
a single stage of the multiplier.
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Multiplier Dataflow
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Multiplier Correctness Theorem
(defthm multiplier-correct

(implies
(and (integerp n)

(<= 7 n))
(equal (bv+ (Sum-output n 1)

(Carry-output n 1))
(bv (* (bv-val (A-input (- n 4) 2))

(bv-val (C-input (- n 4) 2)))
108))))� Bv+ computes the binary sum. � (bv i n) returns the n-bit vector representing i .� Input A-input and C-input defined using sigvec.� Similarly with Output Sum-output and Carry-output.
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Booth Encoder

100 → -2 * y
101 → -1 * y
110 → -1 * y
111 → 0 * y
000 → 0 * y
001 → 1 * y
010 → 1 * y
011 → 2 * y

� Reduces the multiplication to summation � Half as many partial-products of the grade-school method.� Two’s Complement Notation� Looks at three bits at a time
Example: 23 * 3

000011
010111.0

-1 * 3 * 20 = -3
2 * 3 * 22 = 24
1 * 3 * 24 = 48

+
69

*

011

110

010

Encoding Table
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Levels of Booth Encoder Models� Algorithmic ACL2 Model� Algorithms of n-bit Booth Encoder� 19 lines of ACL2� Verified to implement a multiplier by 
induction� Intermediate ACL2 Model� Stepping stone between algorithmic and 
bit vector models� Bit Vector ACL2 Model� Only using subset of ACL2 that is 
translatable to VHDL� VHDL Model� High-performance industrial design� Optimized to decrease # wires� Equivalent to Bit Vector Model, by 
SixthSense
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Bit Vector
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Multiplier Dataflow
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Compression Algorithm

� 3-to-2 Carry-Save Adder (CSA) takes 3 inputs and 
produces 2 outputs, preserving the sum. � 4-to-2 CSA reduces 4 inputs to 2. � Compression Stage 1 consists of nine 3-to-2 CSAs. � Verifying sum-preservation on a single CSA can be 
done by SixthSense, but not nine CSAs combined. 

S00

S01

S02

S10

S11

CSA0
S00 + S01 + S02 = S10 + S11
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Compression Verification� Use SixthSense to sum preservation of CSA� e.g., S10 + S11 = S00 + S01 + S02� Make a rewrite rule to help simplification.� e.g., S10 = S00 + S01 + S02 - S11� Chain of rewriting (with assoc. rules).S10 + S11 + S12 + …… + S117⇒ S00 + S01 + S02 - S11 + S11 + S12 + …… + S117⇒ S00 + S01 + S02 + S12 + …… + S117…⇒ S00 + S01 + S02 + S03 + …… + S026
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Multiplier Verification� Combine with Booth Encoder verification� S50 + S51 = A * C� Analysis� No bugs� Increased assurance� Can re-run proof if multiplier is modified� Low-level modifications only are seen by SixthSense!� About one month of human effort� Sixthsense:  7 work days� ACL2:         14 work days
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Conclusion� Added prototype mechanism for extending 
ACL2 with external tools� Integrated SixthSense and ACL2� Avoided most of the VHDL semantics� Improved automation in verification of VHDL 

designs � Provided counter-example generation� Applied to multiplier verification� All low-level details are verified automatically by 
SixthSense.� Beyond scope of SixthSense alone


