
Combining ACL2 and an Automated
Verification Tool to Verify a Multiplier

Jun Sawada and Erik Reeber
IBM Austin Research Laboratory
University of Texas at Austin

August 16, 2006

ACL2 Workshop 2006 Combining ACL2 and an Automated Verification Tool to Verify a Multiplier

Introduction� Implemented prototype mechanism for
extending ACL2 with external tools� Integrated IBM’s SixthSense Verification Tool
to ACL2� Use SixthSense to verify smaller properties

automatically.� Use ACL2 to prove problems too difficult to verify
with SixthSense. � Applied the technique to the verification of an

industrial multiplier design written in VHDL.

ACL2 Workshop 2006 Combining ACL2 and an Automated Verification Tool to Verify a Multiplier

Outline� Prototype External Tool Mechanism� ACL2SIX: Extending ACL2 with SixthSense� Multiplier Design� Booth Encoder Verification� Compression Verification� Conclusion

ACL2 Workshop 2006 Combining ACL2 and an Automated Verification Tool to Verify a Multiplier

Prototype External Tool Mechanism� A new ACL2 hint that extends the ACL2
theorem prover with functions that implement� new theorem proving procedures� external tool interfaces� Extension is dynamic� Implemented as program-mode functions� Prototype modifies ACL2 source� Only 57 lines of modification� To-do list entry contains additional features� Allows users to declare trusted clause-processors

ACL2 Workshop 2006 Combining ACL2 and an Automated Verification Tool to Verify a Multiplier

:External Example
(defun generalize-expr (clause expr new-var state)

(cond
((or (not (symbolp new-var))

(var-in-expr-listp new-var clause))
(mv (list "ERROR: Target must be a new variable~%”)

nil
state))

(t
(mv nil

(list (substitute-expr-list expr new-var clause))
state))))

(thm (implies (and (natp a) (natp (foo)))
(equal (nthcdr a (nthcdr (foo) x))

(nthcdr (+ a (foo)) x)))
:hints (("Goal" :external (generalize-expr '(foo) 'b))

("Goal'" :induct (nthcdr b x))))

ACL2 Workshop 2006 Combining ACL2 and an Automated Verification Tool to Verify a Multiplier

SixthSense� We use the :external extension mechanism to
integrate ACL2 with SixthSense� IBM internal verification tool� Operates on a finite-state machine described in
VHDL.� Uses transformation-based verification approach� BDDs & SAT Solvers� Re-timing engine� Semi-formal counter-example search engine� It formally proves safety properties of FSMs� When a property is found invalid, it returns a
counter example as a waveform.

ACL2 Workshop 2006 Combining ACL2 and an Automated Verification Tool to Verify a Multiplier

ACL2SIX Flow Chart

ACL2 Property about
VHDL Design

Reduced
Clause

Counter
Example

VHDL
Property

VHDL
Design

ACL2VHDL
Translation

Check Result

SixthSense
Execution

Yes No

ACL2 SixthSense

ACL2 Workshop 2006 Combining ACL2 and an Automated Verification Tool to Verify a Multiplier

ACL2SIX Extension� There is no ACL2 model of hardware design!� VHDL signals are represented in ACL2 logic with
function stubs sigbit and sigvec :
(sigbit entity signame cycle phase)

(sigvec entity signame (lbit hbit) cycle phase)� ACL2SIX translates these stubs to the appropriate
signals in the VHDL design.� Besides sigbit and sigvec , only ACL2VHDL
primitives, such as bv+ , bv-and , and bv-or can be
used in the verified property.

ACL2 Workshop 2006 Combining ACL2 and an Automated Verification Tool to Verify a Multiplier

ACL2SIX Example

ADD

clk
d

q

a b

sum

clk

(defun add32 ()
‘(add32

(port
(clk :in std_ulogic)
(a :in std_ulogic_vector (0 31))
(b :in std_ulogic_vector (0 31))
(sum :out std_ulogic_vector (0 31)))

(extra-assigns (clk “c0”)))

(defthm adder-adds
(implies

(and (integerp n) (<= 1 n))
(equal
(bv+ (sigvec (add32) a (0 31) (1- n) 2)

(sigvec (add32) b (0 31) (1- n) 2))
(sigvec (add32) sum (0 31) n 2)))

:hints
((“Goal” :external

(acl2six ((:cycle-expr n)
(:ignore-init-cycles 1))))))

ADD32

ACL2 Workshop 2006 Combining ACL2 and an Automated Verification Tool to Verify a Multiplier

Booth Multiplier� 53bit x 54bit multiplier� Used to compute double-precision floating-point
multiplication� Written in VHDL� Output consists of two vectors, whose sum is
equal to its product.� Uses Booth-encoding algorithm, with a number
of carry-save adder stages. � Sixthsense cannot verify entire system, or even
a single stage of the multiplier.

ACL2 Workshop 2006 Combining ACL2 and an Automated Verification Tool to Verify a Multiplier

Multiplier Dataflow

O
pt. B

ooth E
ncoder

S
tage 1

S
tage 2

S
tage 3

S
tage 4

S
tage 5

…
…

… …

Cycle #: 0.5 1.0 1.5 2.0 2.5 3.5 4.0

Vectors: 27 18 12 6 4 2

A

C

Sum

Carry

A X C = Sum + Carry

ACL2 Workshop 2006 Combining ACL2 and an Automated Verification Tool to Verify a Multiplier

Multiplier Correctness Theorem
(defthm multiplier-correct

(implies
(and (integerp n)

(<= 7 n))
(equal (bv+ (Sum-output n 1)

(Carry-output n 1))
(bv (* (bv-val (A-input (- n 4) 2))

(bv-val (C-input (- n 4) 2)))
108))))� Bv+ computes the binary sum. � (bv i n) returns the n-bit vector representing i .� Input A-input and C-input defined using sigvec.� Similarly with Output Sum-output and Carry-output.

ACL2 Workshop 2006 Combining ACL2 and an Automated Verification Tool to Verify a Multiplier

Booth Encoder

100 → -2 * y
101 → -1 * y
110 → -1 * y
111 → 0 * y
000 → 0 * y
001 → 1 * y
010 → 1 * y
011 → 2 * y

� Reduces the multiplication to summation � Half as many partial-products of the grade-school method.� Two’s Complement Notation� Looks at three bits at a time
Example: 23 * 3

000011
010111.0

-1 * 3 * 20 = -3
2 * 3 * 22 = 24
1 * 3 * 24 = 48

+
69

*

011

110

010

Encoding Table

ACL2 Workshop 2006 Combining ACL2 and an Automated Verification Tool to Verify a Multiplier

Levels of Booth Encoder Models� Algorithmic ACL2 Model� Algorithms of n-bit Booth Encoder� 19 lines of ACL2� Verified to implement a multiplier by
induction� Intermediate ACL2 Model� Stepping stone between algorithmic and
bit vector models� Bit Vector ACL2 Model� Only using subset of ACL2 that is
translatable to VHDL� VHDL Model� High-performance industrial design� Optimized to decrease # wires� Equivalent to Bit Vector Model, by
SixthSense

Algorithmic

Intermediate

Bit Vector

VHDL

ACL2

ACL2

ACL2SIX

ACL2 multiply *

ACL2

ACL2 Workshop 2006 Combining ACL2 and an Automated Verification Tool to Verify a Multiplier

Multiplier Dataflow

O
pt. B

ooth E
ncoder

S
tage 1

S
tage 2

S
tage 3

S
tage 4

S
tage 5

…
…

… …

Cycle #: 0.5 1.0 1.5 2.0 2.5 3.5 4.0

Vectors: 27 18 12 6 4 2

A

C

Sum

Carry

A X C = Sum + Carry

ACL2 Workshop 2006 Combining ACL2 and an Automated Verification Tool to Verify a Multiplier

Compression Algorithm

� 3-to-2 Carry-Save Adder (CSA) takes 3 inputs and
produces 2 outputs, preserving the sum. � 4-to-2 CSA reduces 4 inputs to 2. � Compression Stage 1 consists of nine 3-to-2 CSAs. � Verifying sum-preservation on a single CSA can be
done by SixthSense, but not nine CSAs combined.

S00

S01

S02

S10

S11

CSA0
S00 + S01 + S02 = S10 + S11

ACL2 Workshop 2006 Combining ACL2 and an Automated Verification Tool to Verify a Multiplier

Compression Verification� Use SixthSense to sum preservation of CSA� e.g., S10 + S11 = S00 + S01 + S02� Make a rewrite rule to help simplification.� e.g., S10 = S00 + S01 + S02 - S11� Chain of rewriting (with assoc. rules).S10 + S11 + S12 + …… + S117⇒ S00 + S01 + S02 - S11 + S11 + S12 + …… + S117⇒ S00 + S01 + S02 + S12 + …… + S117…⇒ S00 + S01 + S02 + S03 + …… + S026

ACL2 Workshop 2006 Combining ACL2 and an Automated Verification Tool to Verify a Multiplier

Multiplier Verification� Combine with Booth Encoder verification� S50 + S51 = A * C� Analysis� No bugs� Increased assurance� Can re-run proof if multiplier is modified� Low-level modifications only are seen by SixthSense!� About one month of human effort� Sixthsense: 7 work days� ACL2: 14 work days

ACL2 Workshop 2006 Combining ACL2 and an Automated Verification Tool to Verify a Multiplier

Conclusion� Added prototype mechanism for extending
ACL2 with external tools� Integrated SixthSense and ACL2� Avoided most of the VHDL semantics� Improved automation in verification of VHDL

designs � Provided counter-example generation� Applied to multiplier verification� All low-level details are verified automatically by
SixthSense.� Beyond scope of SixthSense alone

