Combining ACL2 and an Automated
Verification Tool to Verify a Multiplier

o S

Jun Sawada and Erik Reeber
IBM Austin Research Laboratory
University of Texas at Austin
August 16, 2006

i Introduction

= Implemented prototype mechanism for
extending ACL2 with external tools

= Integrated IBM’s SixthSense Verification Tool
to ACL2

= Use SixthSense to verify smaller properties
automatically.

= Use ACL2 to prove problems too difficult to verify
with SixthSense.
= Applied the technique to the verification of an
industrial multiplier design written in VHDL.

Combining ACL2 and an Automated
ACL2 Workshop 2006 Verification Tool to Verify a Multiplier

i Outline

= Prototype External Tool Mechanism

= ACL2SIX: Extending ACL2 with SixthSense
= Multiplier Design

= Booth Encoder Verification

= Compression Verification

= Conclusion

Combining ACL2 and an Automated
ACL2 Workshop 2006 Verification Tool to Verify a Multiplier

i Prototype External Tool Mechanism

= A new ACL2 hint that extends the ACL2
theorem prover with functions that implement

= new theorem proving procedures
= external tool interfaces

= Extension is dynamic
=« Implemented as program-mode functions

= Prototype modifies ACL2 source
= Only 57 lines of modification

= To-do list entry contains additional features
= Allows users to declare trusted clause-processors

Combining ACL2 and an Automated
ACL2 Workshop 2006 Verification Tool to Verify a Multiplier

:External Example

(generalize-expr (clause expr new-var state)
(cond
((or (not (symbolp new-var))
(var-in-expr-listp new-var clause))
(mv (list "ERROR: Target must be a new variable~%")
nil
state))
(t
(mv nil
(list (substitute-expr-list expr new-var clause))
state))))

(thm (implies (and (natp a) (natp (foo)))
(equal (nthcdr a (nthedr (foo) x))
(nthedr (+ a (foo)) x)))
‘hints (("Goal" :external (generalize-expr '(foo) 'b))
("Goal™ :induct (nthcdr b x))))

Combining ACL2 and an Automated
ACL2 Workshop 2006 Verification Tool to Verify a Multiplier

i SixthSense

We use the :external extension mechanism to
integrate ACL2 with SixthSense

IBM internal verification tool

Operates on a finite-state machine described in
VHDL.

Uses transformation-based verification approach
= BDDs & SAT Solvers

= Re-timing engine

= Semi-formal counter-example search engine

It formally proves safety properties of FSMs

When a property is found invalid, it returns a
counter example as a waveform.

Combining ACL2 and an Automated

ACL2 Workshop 2006 Verification Tool to Verify a Multiplier

ACL2SIX Flow Chart

ACL2 SixthSense
ACL2 Property about
VHDL Design
v | VHDL VHDL
ACL2VHDL Property Design
Translation
SixthSense
@ Execution
Yes No
Reduced Counter
Clause Example

Combining ACL2 and an Automated
ACL2 Workshop 2006 Verification Tool to Verify a Multiplier

i ACL2SIX Extension

= There is no ACL2 model of hardware design!

= VHDL signals are represented in ACL2 logic with
function stubs sighit and sigvec :
(sigbit entity signame cycle phase)
(sigvec entity signame (Ibit hbit) cycle phase)

= ACL2SIX translates these stubs to the appropriate
signals in the VHDL design.

= Besides sigbit and sigvec , only ACL2VHDL
primitives, such as bv+, bv-and , and bv-or can be
used in the verified property.

Combining ACL2 and an Automated
ACL2 Workshop 2006 Verification Tool to Verify a Multiplier

CL2SIX Example

clk

ADD32

\iDD

O <«

clk

\ 4

sum

(defun add32 ()
‘(add32

(port
(clk :in std_ulogic)
(a :in std_ulogic_vector (0 31))
(b :in std_ulogic_vector (0 31))
(sum :out std_ulogic_vector (0 31)))

(extra-assigns (clk “c07)))

(defthm adder-adds
(implies
(and (integerp n) (<=1 n))
(equal
(bv+ (sigvec (add32) a (0 31) (1- n) 2)
(sigvec (add32) b (0 31) (1- n) 2))
(sigvec (add32) sum (0 31) n 2)))
‘hints
((“Goal” :external
(acl 2six ((:cycle-expr n)
(:ignore-init-cycles 1))))))

Combining ACL2 and an Automated

ACL2 Workshop 2006 Verification Tool to Verify a Multiplier

i Booth Multiplier

53bit x 54bit multiplier

Used to compute double-precision floating-point
multiplication
Written in VHDL

Output consists of two vectors, whose sum is
equal to its product.

Uses Booth-encoding algorithm, with a number
of carry-save adder stages.

Sixthsense cannot verify entire system, or even
a single stage of the multiplier.

Combining ACL2 and an Automated
ACL2 Workshop 2006 Verification Tool to Verify a Multiplier

Multiplier Dataflow

Cycle #: 0.5 1.0 1.5 2.0 2.5 3.5 4.0
O >
=1 > >
A JEL o el ool o 2T
Q "l © Q D o D » D
> "1 Q (@] (@] p| (O »| (O
C m))) | @D | @D
" 5 (o » N » W » ol
0 > > Carry
@) > >
o .
& >
Vectors: 27 18 12 6 4 2

A X C = Sum + Carry

Combining ACL2 and an Automated
ACL2 Workshop 2006 Verification Tool to Verify a Multiplier

Multiplier Correctness Theorem

(defthm multiplier-correct
(implies
(and (integerp n)
(<=7n))
(equal (bv+ (Sum-output n 1)
(Carry-output n 1))
(bv (* (bv-val (A-input (- n 4) 2))
(bv-val (C-input (- n 4) 2)))
108))))

= Bv+ computes the binary sum.

= (bvin) returns the n-bit vector representing i .

= Input A-input and C-input defined using sigvec.
= Similarly with Output Sum-output and Carry-output.

Combining ACL2 and an Automated
ACL2 Workshop 2006 Verification Tool to Verify a Multiplier

Booth Encoder

= Reduces the multiplication to Encoding Table
summation 100 — -2 *y
= Half as many partial-products of the 101 —-1*y
grade-school method. 110 - -1 : y
= Two's Complement Notation 111 — 0%y
‘ hree b . 000 — 0 *y
= Looks at three bits at a time 001 — 1*y
Example: 23 * 3 010 — 1 : y
000011 011> 2™y
« [0101D1. 0

SO 1%3%20=.3

S 2%3%22=24

010 , 1%3%24=48

+
69

ACL2 Workshop 2006

Combining ACL2 and an Automated
Verification Tool to Verify a Multiplier

Levels of Booth Encoder Models

Algorithmic ACL2 Model ACLZ multiply *
= Algorithms of n-bit Booth Encoder 1
= 19 lines of ACL2 ACL2 ,
o _V%rifi?_d to implement a multiplier by Algorithmic
induction y
Intermediate ACL2 Model ACL2
= Stepping stone between algorithmic and T
bit vector models Intermediate
Bit Vector ACL2 Model s |
= Only using subset of ACL2 that is v
translatable to VHDL Bit Vector
VHDL Model 5
= High-performance industrial design ACL2SIX |
= Optimized to decrease # wires VHDL
= Equivalent to Bit Vector Model, by
SixthSense

Combining ACL2 and an Automated
ACL2 Workshop 2006 Verification Tool to Verify a Multiplier

Multiplier Dataflow

Cycle #: 0.5 1.0 1.5 2.0 2.5 3.5 4.0
O >
=t > >
_ B e el oo a2
Q "l © Q D o D » D
> "1 Q «Q (@] » (O » (O
C A m))) | @D | @D
= (o » N » W » ol
0 > > Carry
@) > >
(@8 >
& >
Vectors: 27 18 12 6 4 2

A X C = Sum + Carry

Combining ACL2 and an Automated
ACL2 Workshop 2006 Verification Tool to Verify a Multiplier

i Compression Algorithm

SO0,—*
so: csa, [°h S0, + S0, + S0, = S1,+ S1,

S0,—>

= 3-to-2 Carry-Save Adder (CSA) takes 3 inputs and
produces 2 outputs, preserving the sum.

= 4-to-2 CSA reduces 4 inputs to 2.
= Compression Stage 1 consists of nine 3-to-2 CSAs.

= Verifying sum-preservation on a single CSA can be
done by SixthSense, but not nine CSAs combined.

Combining ACL2 and an Automated
ACL2 Workshop 2006 Verification Tool to Verify a Multiplier

i Compression Verification

= Use SixthSense to sum preservation of CSA
= e.g., 51, + S1, = S0, + SO, + SO,

= Make a rewrite rule to help simplification.
= e.g., S1, = S0, + SO, + SO, - S1,

= Chain of rewriting (with assoc. rules).
S1,+ S1, +S1, + + 515
— S0, + S0, + SO, - S1; +S1, + S1, + + S1,,
= S0, + S0; + S0, +S1, + ... + S1,,

= S0, + SO0; + SO, + S05 + + S0,

Combining ACL2 and an Automated
ACL2 Workshop 2006 Verification Tool to Verify a Multiplier

Multiplier Verification

= Combine with Booth Encoder verification
= S5,+ S5, =A*C

= Analysis
= No bugs

Increased assurance

Can re-run proof if multiplier is modified

=« Low-level modifications only are seen by
SixthSense!
= About one month of human effort
= Sixthsense: 7 work days
= ACL2: 14 work days

Combining ACL2 and an Automated
ACL2 Workshop 2006 Verification Tool to Verify a Multiplier

i Conclusion

= Added prototype mechanism for extending
ACL2 with external tools

= Integrated SixthSense and ACL2
= Avoided most of the VHDL semantics
= Improved automation in verification of VHDL
designs
= Provided counter-example generation
= Applied to multiplier verification

= All low-level details are verified automatically by
SixthSense.

= Beyond scope of SixthSense alone

Combining ACL2 and an Automated
ACL2 Workshop 2006 Verification Tool to Verify a Multiplier

