Challenge Problems for
the ACLL2 Community

David Hardin

EISt, the geoed news...

ACL2 has been shown te scale to industrial problems
= Microprecessor verification

= Operating system kernel verification

= \Verifying compiler

« Many more

TThe use of ACL2 has been accepted by certification
authorities

TThe world Is beginning to appreciate executable formal
specifications

Security Is being taken much more seriously by digital
system designers

New technigues are leveraging ACL2’s proof automation
and pushing it to new heights (depths?)

Seme challenge proeklems that
Seem within reach

Eormally verified virtualization system for a commercially
popular miCroprocessor

Verified cross-domain systems

Verified user mode networking stack

Verified secure middleware

Verified fullf IZVM implementation

Verified complex embedded real-time control systems

\erifiable language system that would combine the best
ofiJava, ML, Lisp, C#, etc., and that could take full
advantage of modern multi-chip, multi-core computing
Systems

= Including verified abstract data types

“215t eentury CLInc stack”

Some challenges for ACL2 itselr

« ACIL2 should previde much better support for reasoning
about “real-world” LLisp: programs

« ACL2 stillfdoesn’t knew enough about computer
anthmetic

* Integration with other tools — HOL connection is
promising, but we need more

« Functional languages are inherently parallelizable, yet
ACL2’s support for parallelism is limited

« Lisp Develepment Environments were cutting edge 20
years ago; now, they are way behind the times

« ACIL2 is still too difficult for non-logicians to use; ACL2s
IS a step in the right direction

« Some problems are inherently higher order

So new, let's look ahead
5 Years...

« Our intrepid fiermal methoeds guy, Guy, heads to work,
drving a car withr a formally verified engine control
system. He can afford a nice car because he has profit
sharing, and his employer makes lots of money on
formal methods.

« Guy dewnleads a parallel prooefi dispatch/visualization system
ieleased the night befere by an Australian developer. The
downloaded code Is inspected by a bytecode verifier that
has been proven correct.

« Guy attends a design
[eview: for a secunity
product prototype, hased
on a formally verified
microproecessor design.
The prototype Is ready
within weeks, and works
as anticipated.

« Over lunch;, Guy has anjidea on how te extend a previously
verified preduct to a new demain. He realizes that he can
Incrementally verify the new functionality while reusing most
ofi the existing proefs. He adds his new functionality to the
anchitectural-level model, imports it into his proof system,
and reverifies a key preperty. His employer is happy.

« At the end of the day, Guy heads to the CHAIRS
(Confiuence of HOL, ACL2, Isabelle, and Refutation-
pased Systems) Workshop. At the airport, he checks out
the spec for the V' language, a fermally verifiable

language environment that Is the hot new successor to
Java/C++/C#/etc.

I.M. Smart

The V

Programming
Language

..from the Source

« Meanwhile, a graduate student in New Mexico works on a
massive vernfied V' application in his dorm reom along with
other Internet-based developers. He has never freed live
memory, suffered a buffer everflow attack, made a pointer
anthmetic mistake, or had an undetected array bounds error.

;Method Detail

addNode
puklic void addHode (NodeTwvpe n)

Specifications:
public normal_behavior
requires_redundantly n = rull;
assignable n¢
ensures this.n als(iold(this.nodes insert(n));

removeNode
puklic void removeHode (NodeTvpe n)
Specifications:

public no
requires

	Challenge Problems for the ACL2 Community
	First, the good news…
	Some challenge problems that seem within reach
	Some challenges for ACL2 itself
	So now, let’s look ahead 5 years…

