
Soundness of the Simply Typed Lambda Calculus in ACL2

Sol Swords
sswords@cs.utexas.edu

William R. Cook
wcook@cs.utexas.edu

Department of Computer Sciences
University of Texas at Austin

ABSTRACT
To make it practical to mechanize proofs in programming
language metatheory, several capabilities are required of the
theorem proving framework. One must be able to repre-
sent and efficiently reason about complex recursively-defined
expressions, define arbitrary induction schemes including
mutual inductions over several objects and inductions over
derivations, and reason about variable bindings with mini-
mal overhead. We introduce a method for performing these
proofs in ACL2, including a macro which automates the pro-
cess of defining functions and theorems to facilitate reason-
ing about recursive data types. To illustrate this method,
we present a proof in ACL2 of the soundness of the simply
typed λ-calculus.

Categories and Subject Descriptors
F.3.2 [Theory of Computation]: Semantics of Program-
ming Languages

Keywords
Soundness, Lambda-Calculus, ACL2

General Terms
Theory languages

1. INTRODUCTION
Programming language metatheory, which includes the

study of soundness of type systems and correctness of type-
checking algorithms, is a tempting target for mechanized
theorem proving. Desirable properties can usually be suc-
cinctly stated, but the complexity of the proofs grows with
the number of syntactic constructs in the language. Often
such proofs are strategically simple but can be long enough
that they are tedious to write and difficult to check. Un-
fortunately, the details which make hand proofs tedious can
also impede efforts to mechanize the proofs. A general chal-
lenge to mechanize programming language metatheory has

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ACL2 ’06 Seattle, Washington USA
Copyright 2006 ACL2 Steering Committee 0-9788493-0-2/06/08.

been issued [1]. The challenge problems have already been
solved using other theorem provers, including Coq [2] and
Twelf [7]. Our goal in this work is to develop the infrastruc-
ture in ACL2 to eventually address these more challenging
proofs.

In this paper we examine a proof in ACL2 of the soundness
of the simply-typed λ-calculus, discussing problems which
present themselves in going from the well-known hand proof
to a mechanized proof. We present a helpful method of
guiding proofs in this area. We also discuss a representation
framework generated by a macro which facilitates reasoning
about expressions of an abstract language syntax.

2. BACKGROUND
The abstract syntax of types and expressions for simply-

typed λ-calculus with Booleans are as follows:

T ::= Bool | T → T Types
X, Y, Z ::= True | False | v Simple Expressions

| λv :T . X Abstraction
| X Y Application
| if Z then X else Y Conditionals

Bool is the single base type, and the arrow type A → B
is the type of a function which takes an argument of type
A and produces a result of type B. Expressions consist of
the Boolean constants True and False, variable references, λ-
abstractions, function applications, and conditional expres-
sions.

To formalize this description, the semantics of the lan-
guage is defined by a standard small-step evaluation rela-
tion [8], a two-element relation between expressions. Ele-
ments of the relation are written X ; Y , meaning X evalu-
ates to Y in one step. Boolean constants and λ-abstractions
are values, meaning they are considered to be fully evalu-
ated.

The evaluation relation uses the capture-avoiding substi-
tution [v 7→ Y]X. In this form of substitution, any bound
variables in X which are free in Y are renamed to fresh vari-
able names before all free occurrences of v are replaced by
Y . These rules then define the evaluation relation [8]:

X1 ; X2

X1 Y ; X2 Y
(E-App1)

X is a value Y1 ; Y2

X Y1 ; X Y2
(E-App2)

Y is a value

(λv :T . X) Y ; [v 7→ Y]X
(E-AppAbs)

Z1 ; Z2

if Z1 then X else Y ; if Z2 then X else Y
(E-IfCond)

if True then X else Y ; X (E-IfTrue)

if False then X else Y ; Y (E-IfFalse)

Requiring that X or Y be a value, although not absolutely
necessary, has the effect of determining the order of evalua-
tion of sub-expressions. Note that types are ignored by the
evaluation relation.

The evaluation relation does not define transitions for val-
ues, because they are fully evaluated. But there are other
expressions for which no transition is defined. Examples of
such expressions are if (λv :Bool . X) then True else False, in
which a function appears where a boolean value is expected,
and True False, which uses the boolean True where a function
is expected. These expressions are syntactically well-formed
but semantically nonsensical. They are examples of type er-
rors, because of the mismatch between the type of value and
the type of value that is needed. Such expressions are called
stuck : they are not values but they cannot be evaluated
further. The type system’s purpose is to ensure that stuck
expressions do not occur anywhere during evaluation.

The type system is based on a three-place relation, tradi-
tionally written as Γ ` X : T , which means “expression X
has type T under typing context Γ.” The typing context Γ
(also called the type environment) is a list of assumptions of
the types of variables, each written v : T , meaning variable
v has type T . A term is considered well-typed if it has a
type under the empty context, which is written as a blank,
as in ` X : T .

The following rules define the typing relation [8]:

Γ ` True : Bool (T-True)

Γ ` False : Bool (T-False)

v : T ∈ Γ

Γ ` v : T
(T-Var)

Γ, v : T1 ` X : T2

Γ ` λv :T1 . X : T1 → T2
(T-Abs)

Γ ` X : T1 → T Γ ` Y : T1

Γ ` X Y : T
(T-App)

Γ ` Z : Bool
Γ ` X : T
Γ ` Y : T

Γ ` if Z then X else Y : T
(T-If)

A type system is sound if repeated evaluation of a well-
typed term never gives rise to a stuck expression (a non-
value which has no possible evaluations). In order to state
a soundess theorem in ACL2, an effective representation for
terms is needed.

3. REPRESENTING TERMS AND TYPES
It is easy to design a simple representation in ACL2 of

the λ-expressions and types using a list representation with
distinguished symbols to denote different syntactic forms.
However, in doing preliminary work on this problem we dis-
covered that it could become very cumbersome to reason
about such recursive data structures. In our case, a func-
tion which takes a λ-expression as input will have to distin-
guish between the six different syntactic forms and typically
break down the components of the expression to construct
new ones. Defining constructor and accessor functions helps
in writing code, but if left enabled result in proofs which
are cumbersome and difficult to read. Numerous trivial the-
orems are necessary in order to reason about these objects
with function definitions disabled; with an incomplete set
of these theorems most proofs quickly fail. We therefore
created a macro which, given a description of the desired
structure, defines all the functions and the theorems neces-
sary to reason about them, allowing us to leave the function
definitions disabled. After many revisions to the group of
events submitted by this macro, we find that only in rare
and specific cases is it necessary to re-enable the function
definitions.

The macro we defined which generates these structures is
named defsum, because we are defining a type which is a sum
(or disjoint union) of several Cartesian products of types.
Defsum differs from the defstructure book in ACL2 [3]
in that it supports recursive typing quite naturally as well
as mutually recursive structures, although it does not allow
updating of components within a structure. The macro’s
syntax is a Lisp adaptation of the syntax for defining similar
datatypes in languages such as ML and Haskell [5]. The
abstract syntax of terms and types can be represented in a
straightforward manner using defsum, as shown below.
(defsum stype

(BOOL)

(FUN (stype-p domain) (stype-p range)))
(defsum expression

(TRUE)

(FALSE)

(LAM (varname-p var)

(stype-p type)

(expression-p body))

(APP (expression-p fun)

(expression-p arg))

(VAR (varname-p name))

(IFELSE (expression-p cond)

(expression-p case1)

(expression-p case2)))
As an aid to writing functions involving sum types, we

have written a companion macro which performs pattern
matching, binding variables to corresponding parts of an in-
put term when the term is of the correct form. This macro,
called pattern-match, is similar in function to case-match,
but uses user-defined recognizers and accessors rather than
operating directly on the list structure. Defsum produces
the necessary events to allow pattern-match to recognize
each product. For example, this function prints a represen-
tation of a type:

(defun print-stype (x)

(pattern-match x

((BOOL) (cw "bool"))

((FUN a b) (cw "(~x0) -> (~x1)"

(print-stype a)

(print-stype b)))))
An additional difficulty impeding the adaptation of lan-

guage metatheory to mechanical theorem proving technol-
ogy is the representation of variable bindings. Hand proofs
in this field usually ignore the technically difficult problems
involved in formalizing these notions and instead assume
that variable name conflicts never occur. When formalizing
a language’s semantics, however, it isn’t possible to gloss
over this issue. Several approaches for modeling variables
and bindings have been developed. One approach is higher-
order abstract syntax [6], in which binding constructs are
represented by functions in the underlying language – this
approach requires support for high-order functions, so it can-
not be used in ACL2. Another popular strategy is to adopt
a canonical form, such as de Bruijn notation [4], which re-
places names with binding offsets. To follow the traditional
presentation of syntax and typing rules as closely as pos-
sible, we have adopted the traditional approach in which
variables are named and may be renamed in case of a con-
flict. This approach involves a manageable amount of work,
namely defining the capture-avoiding substitution and prov-
ing a lemma about the effect of α-substitution on the typing
relation.

4. PROGRESS AND PRESERVATION
The soundness of the simply-typed λ-calculus is stated as

two theorems [8]. In combination they suffice to show that
repeated evaluations of well-typed expressions can never re-
sult in an expression which is stuck in the sense that it has
no evaluations but is not a value. The theorems are stated
as follows.
Progress. If X is a well-typed expression, then either it

is a value or there exists some expression X ′ such that
X ; X ′.

Preservation. If X is a well-typed expression and X ; X ′,
then X ′ is also a well-typed expression.

A “well-typed expression” here is X such that ` X : T
for some T ; that is, the expression must have a type in the
empty context. However, the preservation theorem as stated
is too weak to prove by induction; we instead prove the
theorem for an arbitrary context instead of just the empty
context, and also require that the type of X ′ is the same as
the type of X.
Preservation. If Γ ` X : T and X ; X ′, then Γ ` X ′ : T .
In proving these properties, we found that it is extremely

helpful to use an explicit representation for derivations of
the typing and evaluation relations. The following defsum
forms define their syntax.

(defsum type-deriv

(T-TRUE)

(T-FALSE)

(T-VAR)

(T-ABS (type-deriv-p body))

(T-APP (stype-p argtype)

(type-deriv-p fun)

(type-deriv-p arg))

(T-IF (type-deriv-p cond)

(type-deriv-p case1)

(type-deriv-p case2)))
(defsum eval-deriv

(E-APPABS)

(E-APP1 (eval-deriv-p fun))

(E-APP2 (eval-deriv-p arg))

(E-IFCOND (eval-deriv-p cond))

(E-IFTRUE)

(E-IFFALSE))
A type-deriv object represents a proof that a certain

typing relation holds. Given a typing context, expression,
type, and type derivation, we can recursively check that the
type derivation corresponds to correct instantiations of the
rules defining the typing relation. We define this operation
in the function valid-typing. Similarly, we check for a
valid evaluation relation in the function valid-evaluation,
which takes two expressions and an evaluation derivation.

The progress and preservation theorems, stated in terms
of typing and evaluation derivations, illuminate a new path
toward proving them:
Progress. If there exists a valid derivation of ` X : T ,

then either X is a value or there exists an expression
X ′ for which there is a valid derivation of X ; X ′.

Preservation. If there exist valid derivations of Γ ` X : T
and X ; X ′, then there exists a valid derivation of
Γ ` X ′ : T .

The statements of these theorems make the method of proof
clear. Given the objects mentioned in the hypotheses, we
need to exhibit the objects postulated in the conclusions.
We therefore define functions that produce the necessary ob-
jects. These functions are next-expr and progress-deriv

which produce the new expression and evaluation derivation
for progress, and preservation-deriv which produces the
typing derivation for preservation. These are the statements
of our progress and preservation theorems:
(defthm progress

(implies

(and (valid-typing nil expr type deriv)

(not (value-p expr)))

(valid-evaluation

expr

(next-expr expr type deriv)

(progress-deriv expr type deriv))))
(defthm preservation

(implies

(and (valid-typing cntxt expr type type-deriv)

(valid-evaluation expr expr2 eval-deriv))

(valid-typing

cntxt expr2 type

(preservation-deriv

cntxt expr type type-deriv eval-deriv))))
The progress theorem is simple to prove using the induc-

tion schema of the derivation-producing function, which re-
curses on the structure of the typing derivation. The proof
of preservation is a straightforward induction on the evalu-

ation derivation except in the E-AppAbs case, in which it
must be shown that a substitution of an expression for a
variable of the same type preserves the type of the outer ex-
pression. This substitution lemma is the largest part of the
proof effort for the soundness theorems. It requires three
sublemmas, listed below, which must be invoked in appro-
priate locations within its derivation building function. The
textbook proof of preservation (as in [8], for example) uses
all of these lemmas but the third, which is necessitated by
our use of explicitly named variables.
Permutation. If Γ ` X : T and Γ′ assumes the same

types as Γ for all variables appearing in Γ, then
Γ′ ` X : T .

(defthm permutation

(implies

(and (valid-typing cntxt1 expr type deriv)

(env-same-bindings cntxt1 cntxt2))

(valid-typing

cntxt2 expr type

(permutation-deriv cntxt1 deriv))))

Weakening. If Γ, ∆ ` X : T and v does not appear in X,
then Γ, v : Tv, ∆ ` X : T .

(defthm weakening

(implies

(and (valid-typing cntxt1 expr type deriv)

(not (is-used-in var expr))

(is-suffix suffix cntxt1)

(equal cntxt2

(insert-assoc

var t2 suffix cntxt1)))

(valid-typing

cntxt2 expr type

(weakening-deriv

cntxt1 var t2 suffix deriv))))

Variable name substitution. If Γ ` X : T and v2 does
not appear in X, then [v1 7→ v2]Γ ` [v1 7→ v2]X : T .

(defthm alpha-subst-ok

(implies

(and (valid-typing cntxt expr type deriv)

(not (is-used-in var2 expr))

(alpha-subst-env-okp

var1 var2 suff cntxt)

(equal cntxt2

(env-subst-up-to

var1 var2 suff cntxt)))

(valid-typing

cntxt2

(alpha-subst var1 var2 expr)

type

(alpha-subst-deriv

suff cntxt expr var1 var2 deriv))))

Substitution. If Γ, v : Tv ` X : T and Γ ` Y : Tv, then
Γ ` [v 7→ Y]X : T .

(defthm substitution

(implies

(and (valid-typing cntxt val vtype vderiv)

(valid-typing

(cons (cons var vtype) cntxt)

expr type deriv))

(valid-typing

cntxt

(subst-expression val var expr)

type

(substitution-deriv

cntxt var val vtype vderiv expr

type deriv))))
For the first three of these lemmas, it is not necessary to
construct a new derivation: in fact, the derivation function
simply returns the derivation it is given, ignoring the other
variables. In these cases it is still convenient to define a spe-
cific function to do this for each lemma. The rewrite rule
resulting from each lemma operates only on terms which
are calls of valid-typing on calls of the appropriate deriva-
tion function. Use of these derivation functions inside other
derivation-producing functions causes the theorem prover to
apply the corresponding lemma as a rewrite rule. This leads
to a proof style that is similar to that of hand proofs: the
user specifies the high-level strategy for each proof by defin-
ing the derivation function, and ACL2 grinds through the
intuitive but tedious details which might be omitted in a
hand proof.

Because these derivation functions are only used when
we expect their corresponding lemmas to be applicable, we
find it aids in both proof debugging and speed to force the
hypotheses of such lemmas and set their backchain limits to
zero. The hypotheses for each application of a lemma are
then relieved in a separate forcing round, so that if there is
a problem relieving one of the hypotheses, it is easy to see
what lemma was being tried and why the proof failed.

5. CONCLUSIONS
Our method of reasoning about language metatheory con-

sists of three major choices: first, a systematic and auto-
mated representation of terms, types, and derivations; sec-
ond, explicit symbolic naming of variables; and third, the
phrasing of lemmas as rewrite rules which are triggered by
the presence of a particular function call, allowing us to
explicitly and systematically guide the theorem prover. In
future work, we hope to improve our treatment of variable
naming in order to scale our method to more complex lan-
guages. One particular goal is to solve the PoplMark Chal-
lenge [1]. F<:, the language used in the challenge, extends
the λ-calculus with type abstractions and a subtyping rela-
tion. We have observed that these extensions significantly
complicate reasoning about the naming of bound variables.

6. REFERENCES
[1] B. E. Aydemir, A. Bohannon, M. Fairbairn, J. N.

Foster, B. C. Pierce, P. Swewll, D. Vytiniotis,
G. Washburn, S. Weirich, and S. Zdancewic.
Mechanized metatheory for the masses: The PoplMark
challenge. In Proc. of the Intl. Conf. on Theorem
Proving in Higher Order Logics (TPHOLs), 2005.

[2] Y. Bertot and P. Casteran. Interactive Theorem Proving
and Program Development. Springer-Verlag, 2004.

[3] B. Brock. defstructure for ACL2 Version 2.0, 1997.

[4] N. G. de Bruijn. Lambda calculus notation with
nameless dummies, a tool for automatic formula
manipulation. In Indagaciones Mathematische,
volume 34, pages 381–392, 1972.

[5] Haskell 98: A non-strict, purely functional language.
Available at http://haskell.org/onlinereport, 1999.

[6] F. Pfenning and C. Elliot. Higher-order abstract syntax.
In Proc. of the Conf. on Programming Language Design
and Implementation (PLDI), pages 199–208, 1988.

[7] F. Pfenning and C. Schürmann. System description:
Twelf — A meta-logical framework for deductive
systems. In Proc. of the Intl. Conf. on Automated
Deduction (CADE-16), pages 202–206. Springer-Verlag
LNAI 1632, 1999.

[8] B. C. Pierce. Types and Programming Languages. MIT
Press, 2002.

