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ABSTRACTThis paper is devoted to the expression of a formal theory of
ommuni
ation networks in the ACL2 logi
. More pre
isely,we have developed a generi
 model 
alled GeNoC , in a gen-eral mathemati
al notation, with the use of quanti�
ationover variables as well as over fun
tions. We present here itsexpression in the �rst order quanti�er free logi
 of the ACL2theorem prover. We des
ribe our systemati
 approa
h to
ast it into ACL2, espe
ially how we use the en
apsulationprin
iple to obtain a systemati
 methodology to spe
ify andvalidate on 
hip 
ommuni
ations ar
hite
tures. We sum-marize the di�erent instan
es of GeNoC developed so far inACL2, some 
ome from industrial designs. We illustrate ourapproa
h on an XY routing algorithm.
Categories and Subject DescriptorsF.0 [Theory of Computation℄: General; B.7.2 [IntegratedCir
uits℄: Design Aids
General TermsCommuni
ation theory, design and veri�
ation
Keywordsnetwork on a 
hip, formal theory, theorem proving
1. INTRODUCTIONThe design of 
omplex systems on a 
hip (SoC) relies onthe integration of pre-existing modules. In this framework,the overall behavior of SoC's highly depends on the inter-
onne
t stru
ture. Its design and the veri�
ation of the 
om-muni
ation ar
hite
ture be
ome 
ru
ial [12℄.The prin
ipal veri�
ation e�orts regarding embedded 
om-muni
ation ar
hite
tures are the following. Con
erning pro-to
ols dedi
ated to bus ar
hite
tures, Roy
houdhury et al.
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use the SMV model 
he
ker to debug an a
ademi
 imple-mentation of the AMBA AHB proto
ol [7℄. Their modelis written at the register transfer level and without any pa-rameter. Roy
houdhury et al. dete
t a livelo
k s
enario that
omes more from their own arbiter than the proto
ol itself.More re
ently, Amjad [1℄ used a model 
he
ker, implementedin the HOL theorem prover, to verify the AMBA proto
olsAPB and AHB and their 
omposition in a single system.Using model 
he
king, safety properties are veri�ed on ea
hproto
ol. The HOL tool is used to verify their 
omposition.The model is also at a low level of abstra
tion and with-out any parameter. Regarding networks on a 
hip (NoC)little work has been done about their formal veri�
ation.Gebremi
hael et al. [3℄ have re
ently spe
i�ed the Ætherealproto
ol of Philips in the PVS logi
. The main property theyveri�ed is the absen
e of deadlo
k for an arbitrary numberof masters and slaves.On the one hand, these studies 
onsider design at theregister transfer level (RTL). The 
urrent trend in the SoCdesign 
ommunity is to raise the level of abstra
tion [12℄.On the other hand, these studies are dedi
ated to parti
ularappli
ations. To verify another 
ommuni
ation network, onehas to formalize and prove everything again. Indeed, thereis no formal theory of 
ommuni
ation networks. Most text-book (e.g. [2℄) des
ribe ar
hite
tures in an informal manner.The obje
tive of our resear
h is to formalize the di�er-ent 
on
epts that belong to 
ommuni
ation ar
hite
tures,i.e. to de�ne a formal theory for 
ommuni
ation networks.We express this theory in a 
lassi
al mathemati
al notation.Then, one 
an 
ast it into her/his favorite tool.A �rst step towards this theory has been a
hieved inS
hmaltz's Ph.D. thesis [8℄. The main 
ontribution of thiswork is the de�nition of a generi
 network on a 
hip (GeNoC )model. It is de�ned as the 
omposition of key 
omponents(routing, s
heduling and interfa
es). We have identi�ed theessential properties inherent in ea
h one of them. The proofof the overall 
orre
tness of GeNoC is dire
tly dedu
ed fromthese 
onstraints. Hen
e, this 
orre
tness is preserved forany parti
ular network ar
hite
ture, provided its 
ompo-nents satisfy the 
onstraints.We brie�y present the general theory in se
tion 2. This pa-per fo
usses on how we embed this theory in the ACL2 logi
.For instan
e, the mathemati
al notations involve quanti�-
ation over fun
tions whi
h is elegantly expressed using theen
apsulation prin
iple and the derived inferen
e rule "fun
-tional instantiation". Se
tion 3 presents the strategy weused to express GeNoC in the ACL2 logi
. Se
tions 4 to 7



expose the ACL2 de�nition of the 
omponents of GeNoC .We show 
on
rete instan
es of GeNoC in se
tion 8. Se
tion9 
on
ludes the paper.
2. A GENERIC NETWORK ON CHIPTo treat the di�erent 
ommuni
ation ar
hite
tures in asingle formalism, we generalize them to a unique modelexplained in the next subse
tion. After that, we des
riberapidly fun
tion GeNoC and give the general expression ofits 
orre
tness.
2.1 A Unique Communication ModelConsider the general 
ommuni
ation model of Figure 1.An arbitrary, but �nite, number of nodes are 
onne
ted tosome 
ommuni
ation ar
hite
ture. The latter represents theinter
onne
tion stru
ture, e.g. bus or network. It 
om-prises topologies, routing algorithms and s
heduling poli
ies.Our model makes no assumption on these 
omponents. Asproposed by Rowson and Sangiovanni-Vin
entelli [6℄, ea
hnode is separated into an appli
ation and an interfa
e. Thelatter is 
onne
ted to the 
ommuni
ation ar
hite
ture. In-terfa
es allow appli
ations to 
ommuni
ate using proto
ols.Any interfa
e-appli
ation pair mat
hes the layers of the OSImodel. Interfa
es generally refer to layers 1 to 4; appli
a-tions to layers 4 to 7. Layer 4 is a boundary and 
an bepart of either interfa
es or appli
ations. To distinguish be-tween interfa
e-appli
ation and interfa
e-interfa
e 
ommu-ni
ations, an interfa
e and an appli
ation 
ommuni
ate us-ing messages; two interfa
es 
ommuni
ation using frames.
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ArchitectureFigure 1: Communi
ation ModelAppli
ations represent the 
omputational and fun
tionalaspe
ts of nodes. They are either a
tive or passive. Typ-i
ally, a
tive appli
ations are pro
essors and passive appli-
ations memories. We 
onsider that ea
h node 
ontains onepassive and one a
tive appli
ation, i.e. ea
h node is 
apa-ble of sending and re
eiving frames. As we want a generalmodel, appli
ations are not 
onsidered expli
itly: passive ap-pli
ations are not a
tually modeled, and a
tive appli
ationsare redu
ed to the list of their pending 
ommuni
ation oper-ations. We fo
us on 
ommuni
ations between distant nodes.We suppose that in every 
ommuni
ation, the destinationnode is di�erent from the sour
e node.
2.2 Overview of GeNoCFun
tion GeNoC represents a generi
 
ommuni
ation ar-
hite
ture. This ar
hite
ture has an arbitrary topology, rout-ing algorithm and swit
hing te
hnique. Fun
tion GeNoCrepresents the transfer of messages from their sour
e to theirdestination. Its main argument is the list of messages emit-ted at sour
e nodes. It returns the list of the results re
eived

at destination nodes. Its de�nition mainly relies on the fol-lowing fun
tions:1. Interfa
es are represented by two fun
tions; one fun
-tion, send , to inje
t frames on the network, and onefun
tion, recv , to re
eive frames,2. the routing algorithm and the topology are representedby fun
tion Routing ,3. the swit
hing te
hnique is represented by fun
tion
Scheduling .These fun
tions are generi
 in the sense that they do nothave an expli
it de�nition. They are only de�ned by anumber of properties, 
alled proof obligations or simply 
on-straints.Interfa
es. Fun
tion send represents the en
apsulationof a message into a frame. Fun
tion recv represents thede
oding of this frame to re
over the emitted message. Themain 
onstraint asso
iated to these fun
tions expresses thata re
eiver should be able to extra
t the en
oded information,i.e. the 
omposition of fun
tion recv with fun
tion send(recv ◦ send) is the identity fun
tion.Routing Algorithm. The routing algorithm is repre-sented by the su

essive appli
ation of unitary moves. Forea
h pair made of a sour
e and a destination, the routingfun
tion 
omputes all possible routes allowed by the uni-tary moves. The main 
onstraint asso
iated to the routingfun
tion expresses that ea
h route from a sour
e s to a des-tination d e�e
tively starts in s and uses only existing nodesto end in d.Swit
hing Te
hnique. The s
heduling poli
y parti
i-pates in the management of 
on�i
ts that appear on thenetwork. It de�nes the set of 
ommuni
ations that 
anbe performed at the same time. Formally, these 
ommu-tations satisfy an invariant. S
heduling a 
ommuni
ation,i.e. adding it to the 
urrent set of authorized 
ommuni
a-tions, must preserve the invariant, for all times and in anyadmissible state of the network. The invariant is spe
i�
 tothe s
heduling poli
y. In our formalization of the s
hedul-ing poli
y, the existen
e of this invariant is assumed butnot expli
itly represented. From a list of requested 
ommu-ni
ations, the s
heduling fun
tion extra
ts a sub-list thatsatis�es the invariant. The rest make up the list of delayed
ommuni
ations.Fun
tion GeNoC .` Fun
tion GeNoC is pi
tured in Fig.2. It takes as arguments the list of requested 
ommuni-
ations and the 
hara
teristi
s of the network. It produ
estwo lists as results: the messages re
eived by the destinationof su

essful 
ommuni
ations and the aborted 
ommuni
a-tions. In the remainder of this se
tion, we detail the basi

omponents of the model.The main input of GeNoC is a list T of transa
tions of theform t = (id A msgt B). Transa
tion t represents the inten-tion of appli
ation A to send a message msgt to appli
ation

B. A is the origin and B the destination. Both A and Bare members of the set of nodes, NodeSet . Ea
h transa
tionis uniquely identi�ed by a natural id. Valid transa
tions arere
ognized by predi
ate Tlstp(T ,NodeSet).Brie�y, fun
tion GeNoC works as follows. For every mes-sage in the initial list of transa
tions, it 
omputes the 
or-responding frame using send . Ea
h frame together with itsid, origin and destination 
onstitutes a missive. A missiveis valid if the ids are naturals (with no dupli
ate); the origin
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Figure 2: GeNoC : A generi
 network on 
hip modeland the destination are members of NodeSet . A valid list, Mof missives is re
ognized by predi
ate Mlstp(M,NodeSet).Then, GeNoC 
omputes the routes of the missives and s
hed-ules them using fun
tions Routing and Scheduling . To keepour model general, fun
tion Routing 
omputes a list of routesfor every missive. If the routing algorithm is deterministi
,this list has only one element. On
e routes are 
omputed,a travel denotes the list 
omposed of a frame, its id andits list of routes. A list V of travels is valid if the ids arenaturals (with no dupli
ate). Su
h a list is re
ognized bypredi
ate Vlstp(V). The results of the s
heduled travels are
omputed by 
alling recv . The delayed travels are 
onvertedba
k to missives and 
onstitute the argument of a re
ursive
all to GeNoC . To make sure that this fun
tion terminates,we asso
iate to every node a �nite number of attempts. Atevery re
ursive 
all of GeNoC , every node with a pendingtransa
tion will 
onsume one attempt. The asso
iation list
att stores the attempts and att [i] denotes the number of re-maining attempts of the node i. Fun
tion SumOfAtt(att)
omputes the sum of the remaining attempts of the nodesand is used as the de
reasing measure of parameter att .Fun
tion GeNoC halts if every attempt has been 
onsumed.The �rst output list R 
ontains the results of the 
ompletedtransa
tions. Every result r is of the form (id B msgr) andrepresents the re
eption of a message msgr by its �nal desti-nation B. Transa
tions may not run to 
ompletion (e.g. dueto network 
ontention). The se
ond output list of GeNoCis named Aborted and 
ontains the 
an
elled transa
tions.Fun
tionGeNoC is 
onsidered 
orre
t if every non abortedtransa
tion t = (id A msg B) is 
ompleted in su
h a way that
B e�e
tively re
eives msg. Formally, we prove that for every�nal result r, there is a unique initial transa
tion t su
h that
t has the same id and msg as r.

∀rst ∈ R, ∃!t ∈ T ,

(

IdR(rst) = IdT (t)
∧ MsgR(rst) = MsgT (t)
∧ DestR(rst) = DestT (t)

(1)This formula is proved a theorem using the proof obliga-tions asso
iated to ea
h 
omponent. These proof obligationshave often the same stru
ture. For all elements produ
ed bysome fun
tion (here fun
tion GeNoC ) we look for a uniqueelement in the prin
ipal argument of that fun
tion (here thetransa
tions) su
h that both elements satisfy a given prop-

erty. We do not go further into the mathemati
al transla-tion. In the next se
tion, we explain how we translate itto the ACL2 logi
. Then, we give all ACL2 de�nitions and
onstraints about GeNoC , as well as its proof of 
orre
tness.The mathemati
al model has been published elsewhere [8℄.
3. MODELING PRINCIPLESFun
tions Routing , Scheduling , recv and send are not de-�ned but 
onstrained to satisfy a list of properties. In thefollowing subse
tion, we show how to use the en
apsulationprin
iple to express this se
ond order quanti�
ation. Usingfun
tional instantiation, ACL2 
an generate the proof obli-gations that must be dis
harged by a parti
ular instan
e ofa 
omponent. We show how to systemati
ally use that rulefor design veri�
ation.
3.1 Encapsulation of the ConstraintsFun
tion send takes a message as a unique argument andreturns a frame. No assumption is made on the de�nitiondomains, Dmsg and Dfrm of messages and frames. Fun
tions
send and recv , in the ACL2 logi
, are fun
tions taking oneargument and returning one argument. They have the fol-lowing signatures: ((send ∗) ⇒ ∗)((recv ∗) ⇒ ∗)The main 
onstraint on these fun
tions is that their 
om-position is an identity. This is expressed by the followingproof obligation:Proof Obligation 1. Interfa
e Corre
tness(defthm Interfa
eCorre
tness;; recv ◦ send(msg) = msg(equal (recv (send msg)) msg))For te
hni
al reasons, two other 
onstraints are asso
iatedto fun
tion send . The �rst one states that if nothing has tobe sent, fun
tion send returns the empty list (
onstraint
send -nil). The se
ond 
onstraint states that if the messageto be sent is not the empty list, fun
tion send does notreturn the empty list (
onstraint send -not-nil).The 
omplete en
apsulate event regarding the interfa
esis as follows:



(en
apsulate(((send ∗) ⇒ ∗)((recv ∗) ⇒ ∗))(lo
al (defun send (msg) msg)) ;; lo
al witness(lo
al (defun recv (frm) frm)) ;; lo
al witness(defthm Interfa
eCorre
tness(equal (recv (send msg)) msg))(defthm send-nil(not (send nil)))(defthm send-not-nil(implies msg (send msg))))Using the fun
tional instantiation inferen
e rule, ACL2generates - and tries to prove - the proof obligations asso-
iated to parti
ular de�nitions of recv and send . Let usrede�ne these fun
tions outside the en
apsulate. Considerfun
tion sende that starts a 
ommuni
ation by sending a
onstant bit list to syn
hronize with a re
eiver. Let this
onstant be *start* = (0 1 0 1 0 1 0 1). To satisfy 
on-straint send-nil, this fun
tion returns nil if its input mes-sage is nil. Its de�nition is the following:(defun sende (msg)(if (not msg)nil(append *start* msg))Fun
tion recv e reads a bit list lst. If this list is empty, itreturns nil. If the �rst 8 bits equal *start*, it returns lstless these �rst 8 bits. Otherwise, it 
onsumes one bit andlooks for *start* in the rest of lst. Its de�nition is:(defun recve (lst)(if (endp lst)nil(if (equal (firstn 8 lst) *start*)(nth
dr 8 lst) ;; lst less *start*(recv e (
dr lst)))))The proof obligations asso
iated to these two de�nitions
an be automati
ally generated (and proved) by ACL2. Theprin
iple is to prove some property (the 
onstant t for in-stan
e) and to give a hint to ACL2 that for
es it to use theproperties of the en
apsulate above. We ask ACL2 to provethe following theorem:(defthm 
he
k-instan
e-interfa
et ; we prove "true":rule-
lasses nil ; no rule is generated:hints (("GOAL"; we for
e ACL2 to use Interfa
eCorre
tness; by substituting recv by recve; and send by sende:use(:fun
tional-instan
e Interfa
eCorre
tness(recv recv e)(send sende)))))A similar approa
h is taken to 
he
k if 
on
rete designs offun
tions Routing or Scheduling are valid instan
es of theirgeneri
 
ounterparts. The en
apsulate event about theseremaining 
omponents are des
ribed in the next se
tion.

3.2 Removing QuantifiersThe ACL2 logi
 is generally 
onsidered quanti�er free.The formulae presented in the previous se
tion do not trans-late dire
tly into ACL2. The prin
iple is to express quan-ti�ers by re
ursive fun
tions. Let us 
onsider the formula
∀x ∈ E , p(x), whi
h means that all elements in set E satisfypredi
ate p. In ACL2, we rather 
onsider a list, the elementsof whi
h are in E. We de�ne a fun
tion fp whi
h veri�esthat all elements of a list satisfy p. The de�nition of fp isthe following1 :

fp(l) ,

n

t if l = ǫ
p(e) ∧ fp(l

′) otherwise l = e.l′
(2)Let l ⊆l E mean l is a list, the elements of whi
h are inset E. Property ∀x ∈ E , p(x) be
omes ∀l, l ⊆l E, fp(l). Inthe ACL2 syntax, this is expressed by an impli
ation:(defthm foo(implies (Ep l) (fp l)))where Ep is a predi
ate that re
ognizes a list, the elementsof whi
h are members of E.More generally, the main formulae of GeNoC express prop-erties about a list L, and the result F(L) of the appli
ationof a fun
tion to that list. These properties express that forall elements e′ of a list F(L) , there exists a unique element

e of L su
h that e and e′ satisfy some property ψ(e, e′). Theformula takes the following form:
∀e′ ∈l F(L), ∃!e ∈l L, ψ(e, e′) (3)Lists L and F(L) are lists of missives, travels, transa
-tions, et
. Formula ψ always involves the equality betweenthe identi�ers of e and e′. The uniqueness of element e isensured by the type information that guarantees the unique-ness of the identi�ers of elements of L (resp. F(L)). Filter-ing list L a

ording to the identi�ers of F(L), one obtains alist that 
an be 
ompared with F(L) element by element.The �ltering operator is illustrated as follows. If V is a listof travels, V/ids denotes a sublist of V, whi
h is the resultof �ltering V a

ording to some identi�ers ids.Example 1. If V is

( (123 m1 (1 3 9))
(212 m2 (12 4 25))
(313 m3 (1 12 3)) )then V/(123 313 ) is

( (123 m1 (1 3 9))
(313 m3 (1 12 3)) )Let fψ be a Boolean fun
tion over two argument lists. fψreturns t if the arguments have equal length and property ψholds pairwise on their 
orresponding elements; otherwise,

fψ returns nil . The de�nition of fψ is:
fψ(l1, l2) ,

8

>

>

>

<

>

>

>

:

t if l1 = ǫ ∧ l2 = ǫ
nil if l1 6= ǫ ∧ l2 = ǫ

∨ l1 = ǫ ∧ l2 6= ǫ
ψ(e, e′) ∧ fψ(l′1, l

′
2) otherwise l1 = e.l′1

∧ l2 = e′.l′21For the existential quanti�er, the 
onjun
tion is repla
edby a disjun
tion.



Let DL be the de�nition domain of list L. Expressionsof the form 3, "for all e′ of F(L), there exists a unique eof L su
h that ψ(e, e′)", translate to "for all lists L of DL,fun
tion fψ applied to list F(L) and to L �ltered by theidenti�ers of F(L) is always true". That is expressed as:
∀L ⊆l DL, fψ(F(L),L/F(L)⌊id ) (4)Finally, the universal quanti�er is repla
ed by an impli
a-tion and we get the following form:
L ⊆l DL ⇒ fψ(F(L),L/F(L)⌊id ) (5)In the ACL2 syntax, the left hand side of the impli
ationis translated to the 
hara
teristi
 fun
tion of domain DL,noted DL-p. Let filter be the ACL2 fun
tion implement-ing the �ltering operator, and ids be the fun
tion 
olle
tingthe identi�ers, one obtains the following ACL2 
ode:(defthm bar(implies (DL-p L)(fψ (F L)(filter L (ids (F L))))))

4. NODES AND PARAMETERSWe now des
ribe all fun
tions and theorems that form theen
apsulation event for the de�nition of the nodes and theparameters.Nodes are de�ned on an arbitrary domain, GenNodeSet .A list of elements of that domain is re
ognized by predi-
ate NodeSetp, whi
h is a 
onstrained fun
tion. The setof nodes of a parti
ular network is noted NodeSet . It isgenerated from parameters pms de�ned on an arbitrary do-main GenParams and fun
tion NodeSetGen . Valid param-eters are re
ognized by predi
ate ValidParamsp and 
onsti-tute the generating base for NodeSet . The fun
tionality of
NodeSetGen is as follows:

NodeSetGen : GenParams → P(GenNodeSet) (6)These fun
tions are valid if, for all parameters re
ognizedby predi
ate ValidParamsp, every element produ
ed by fun
-tion NodeSetGen belongs to domain GenNodeSet (i.e. sat-is�es predi
ate NodeSetp):Proof Obligation 2. De�nition of NodeSet .(defthm nodeset-generates-valid-nodes(implies (ValidParamsp pms)(NodeSetp (NodesetGenerator pms))))Finally, we need to prove that, for ea
h parti
ular instan
eof predi
ate NodeSetp , any sublist of a valid list of nodes isalso a valid list of nodesProof Obligation 3. Sublists of Valid Node Lists.(defthm subsets-are-valid(implies (and (NodeSetp x) (subsetp y x))(NodeSetp y)))
5. ROUTING ALGORITHMWe now des
ribe the fun
tion de�nitions and theorems forthe routing module of GeNoC . The 
orre
tness of routes isnot parti
ular to a network. In the next subse
tion, we de-�ne the general predi
ates that will be used for any routingalgorithm. Then, we give the 
onstraints asso
iated withthe routing fun
tion.

5.1 Route ValidityA route r is 
orre
t a

ording to some missive m if (1)the �rst element of r equals the origin of m; (2) the lastelement of r equals the destination of m; (3) ea
h node of
r is a member of the set NodeSet of the existing nodes.The lengh of any route must be greater than 2. Amongthese properties, one only depends on NodeSet . To avoidfree variables, we state it in a separate predi
ate. The otherproperties are de�ned as follows:(defun ValidRoutep (r m)(and (equal (
ar r) (OrgM m))(equal (
ar (last r)) (DestM m))(<= 2 (len r))))Fun
tion Che
kRoutes takes a list of routes, a missive andthe set NodeSet. It 
he
ks that any route of the list of routessatis�es ValidRoutep and is a member of NodeSet.(defun Che
kRoutes (routes m NodeSet)(if (endp routes)t(let ((r (
ar routes)))(and (ValidRoutep r m)(subsetp r NodeSet)(Che
kRoutes (
dr routes) m NodeSet)))))Predi
ate Corre
tRoutesp 
he
ks travels 
orre
tness a
-
ording to missives, i.e. routes asso
iated to some travel
v satis�es predi
ate Che
kRoutes for some missive m su
hthat v and m have the same identi�er and the same frame.We also 
he
k that the list of travels and the list of missiveshave the same length.(defun Corre
tRoutesp (V M NodeSet)(if (endp V)(if (endp M)t ;; len(M) = len(V)nil)(let* ((tr (
ar V))(msv (
ar M))(routes (RoutesV tr)))(and (Che
kRoutes routes msv NodeSet)(equal (IdV tr) (IdM msv))(equal (FrmV tr) (FrmM msv))(Corre
tRoutesp (
dr V)(
dr M) NodeSet)))))This predi
ate implies that 
onverting the travel list V toa missive list produ
es M.(defthm 
orre
troutesp-=>-tomissives(implies (and (Corre
tRoutesp V M NodeSet)(Missivesp M NodeSet)(Vlstp V))(equal (ToMissives V) M)))
5.2 Generic Routing FunctionThe generi
 routing fun
tion takes two arguments: a mis-sive list and the existing nodes. It returns a travel list. Itssignature is the following:(((Routing * *) => *))The lo
al witness of the en
apsulate simply 
orrespondsto routing in a bus. There is only one route made of the



origin and the destination. In the following de�nition, fun
-tions IdM, FrmM, OrgM, DestM are the a

essors of the various
omponents of a missive: identi�er, frame, origin, destina-tion.;; lo
al witness(lo
al (defun route (M)(if (endp M)nil(let* ((msv (
ar M))(Id (IdM msv))(frm (FrmM msv))(org (OrgM msv))(dest (DestM msv)))(
ons (list Id frm(list (list org dest)))(route (
dr M)))))))(lo
al (defun routing (M NodeSet)(de
lare (ignore NodeSet))(route M)))The main 
onstraint on fun
tion Routing states that itmust satisfy predi
ate Corre
tRoutesp.Proof Obligation 4. Routing Corre
tness(defthm Routing-Corre
tRoutesp(let ((NodeSet (NodeSetGenerator pms)))(implies (and (Missivesp M NodeSet)(ValidParamsp pms))(Corre
tRoutesp (Routing M NodeSet)M NodeSet))))Another 
onstraint 
he
ks that this fun
tion outputs avalid travel list.Proof Obligation 5. Type of fun
tion Routing(defthm Vlstp-routing(let ((NodeSet (NodeSetGenerator pms)))(implies (and (Missivesp M NodeSet)(ValidParamsp pms))(Vlstp (routing M NodeSet)))))We have shown the main 
onstraints on fun
tion Routing .Some lo
al lemmas on the witness are ne
essary. There aretwo additional 
onstraints. One that 
he
ks that fun
tionRouting outputs a true list. Another one 
he
ks that fun
-tion Routing returns nil if the initial missive list is empty.
6. SCHEDULING POLICYIn the next subse
tion, we introdu
e the generi
 de�nitionof the s
heduling poli
y. Then, we give its asso
iated proofobligations.
6.1 Generic DefinitionFun
tion Scheduling takes as arguments the travel list pro-du
ed by fun
tion Routing and the list att of the attemptnumbers at the nodes. It returns two travel lists: the list
Scheduled and the list Delayed . It also updates the attemptnumber list att . The fun
tionality of Scheduling is the fol-lowing:

Scheduling : DV × AttLst → DV ×DV × AttLst (7)Its ACL2 signature is the following:

((s
heduling * *) => (mv * * *))For every s
heduled travel of a missive that has severalroutes, the s
heduling fun
tion generally keeps only one route.In order to avoid the introdu
tion of a new data type, we
onsider s
heduled travels like "
lassi
al" travels, i.e. trav-els that 
ontain a list of routes, even if this list has only oneelement.The lo
al witness is very simple but fully full�ls its duty.If the sum of all attemps is zero, all travels are delayed.Otherwise, all travels are s
heduled and ea
h node withat least one attempt left 
onsumes one attempt (fun
tion
onsume-attempts).(lo
al(defun s
heduling (V att);; lo
al witness(mv;; s
heduled frames(if (zp (SumOfAttempts att))nil ;; no attempt left, no s
heduleV) ;; otherwise all s
heduled;; delayed frames(if (zp (SumOfAttempts att))V ;; no attempt left, all delayednil) ;; otherwise no delayed(if (zp (SumOfAttempts att))att ;; no attempt left, att un
hanged(
onsume-attempts att))))) ;; 
onsume att
6.2 Proof ObligationsFirst, if the list V is a valid travel list, the lists Scheduledand Delayed are also valid.Proof Obligation 6. Type of Scheduled and Delayed .(defthm Vlstp-s
heduled-delayed(implies (Vlstp V)(and(Vlstp (mv-nth 0 (s
heduling V att)))(Vlstp (mv-nth 1 (s
heduling V att))))))At ea
h s
heduling round, all travels of V are analyzed.If several travels are asso
iated to a single node, this node
onsumes one attempt for the set of its travels. At ea
h 
allto Scheduling , an attempt is 
onsumed at ea
h node. If allattempts have not been 
onsumed, the sum of the remain-ing attempts after the appli
ation of fun
tion Scheduling isstri
tly less than the sum of the attempts before the appli
a-tion of Scheduling . This is expressed by the following proofobligation:Proof Obligation 7. Consume one attempt.(defthm 
onsume-at-least-one-attempt(mv-let (S
heduled Delayed newatt)(s
heduling V att)(de
lare (ignore S
heduled Delayed))(implies (not (zp (SumOfAttempts att)))(< (SumOfAttempts newatt)(SumOfAttempts att)))))The delayed travels are 
onverted to missives in the re
ur-sive 
all of GeNoC . This pro
ess should result in a sublist ofthe initial list of missives. To obtain a valid missive list, the



information 
ontained in the delayed travels must be iden-ti
al to the information 
ontained in the initial list V. Thelist of the delayed travels must be a sublist of V. Formally,one ensures that list Delayed is equal to �ltering the ini-tial travel list a

ording to the identi�ers of Delayed . That
orresponds to the following proof obligation:Proof Obligation 8. Corre
tness of Delayed .(defthm delayed-travel-
orre
tness(mv-let(S
heduled Delayed newatt)(s
heduling V att)(de
lare (ignore newatt s
heduled))(implies (Vlstp V)(equal Delayed(filter V(v-ids Delayed))))):rule-
lasses nil)This rule is likely to introdu
e loops in the rewriter be
ause
Delayed appears in the left and the right hand side. There-fore, we do not store it as a rule.Generally, the s
heduling fun
tion only keeps one routefor every s
heduled travel. Consequently, the list Scheduledis not exa
tly a sublist of the initial travel list V. The iden-ti�ers and the frames are not modi�ed. We 
he
k that theroute, or more generally, the routes of a s
heduled travel be-long to the routes asso
iated with the 
orresponding initialtravel.Let us 
onsider predi
ate s-travel-
orre
tness. It takesas arguments two travel lists sV and V/sids. It 
he
ks thatthese lists have an equal length. It re
ursively 
he
ks thatea
h element of sV has the same identi�er, the same frameof the 
orresponding element in V/sids. It also re
ursively
he
ks that routes of elements of sV are part of the routesof 
orresponding elements in V/sids. The de�nition of thispredi
ate is the following:(defun s-travel-
orre
tness (sV V/sids)(if (endp sV)(if (endp V/sids)tnil)(let* ((str (
ar sV))(tr (
ar V/sids)))(and (equal (FrmV str) (FrmV tr))(equal (IdV str) (IdV tr))(subsetp (RoutesV str) (RoutesV tr))(s-travel-
orre
tness (
dr sV)(
dr V/sids))))))The 
onstraint regarding the s
heduled travels states thatthis predi
ate must be satis�ed if sV is the list of the s
hed-uled travels and V/sids is the initial travel list �ltered a
-
ording to the identi�ers of the s
heduled travels.Proof Obligation 9. Corre
tness of Scheduled .(defthm s
heduled-travels-
orre
tness(mv-let (S
heduled Delayed newatt)(s
heduling V att)(de
lare (ignore Delayed newatt))(implies (Vlstp V)

(s-travel-
orre
tnessS
heduled(filter V(V-ids S
heduled))))))Sin
e routes of travels in Scheduled are routes of travels of
V, fun
tion Scheduling preserves the 
orre
tness of routes.We prove outside the en
apsulate that the list Scheduledsatis�es predi
ate Corre
tRoutesp.The goal of the s
heduling poli
y is to partition a travellist into two ex
lusive lists: Scheduled and Delayed . The in-terse
tion of the identi�ers of these two lists must be empty.Proof Obligation 10. Mutual Ex
lusion.(defthm not-in-delayed-s
heduled(mv-let (s
heduled delayed newatt)(s
heduling V att)(de
lare (ignore newatt))(implies (Vlstp V)(not-in (v-ids delayed)(v-ids s
heduled)))))We have exposed the main 
onstraints about fun
tion
Scheduling . For te
hni
al reasons, additional 
onstraintsare ne
essary. To apply fun
tion mv-nth properly, fun
tion
Scheduling needs to return a list of values. This propertyis not added by ACL2 from the signature. We also need toknow that lists Scheduled and Delayed are true lists.
7. OVERALL MODELThe de�nition of fun
tion GeNoC follows Figure 3. Fun
-tion ComputeMissives applies fun
tion send to ea
h trans-a
tion of the initial list T . This produ
es the 
orrespond-ing list of missives. Fun
tion Routing 
omputes the routesof ea
h missive and fun
tion Scheduling �xes the s
heduledand the delayed travels. Fun
tion ComputeResults appliesfun
tion recv to ea
h s
heduled travel to obtain results. De-layed travels are 
onverted to missives. If all attempts havenot been 
onsumed, delayed travels are pro
essed again fromfun
tion Routing . Otherwise, delayed travels 
onstitute theaborted 
ommuni
ations.The 
orre
tness of fun
tion GeNoC has been de�ned inse
tion 2, with respe
t to results only. As explained in se
-tion 3, quanti�ers are repla
ed by predi
ates on lists. InACL2, the 
orre
tness of GeNoC 
on
erns the results andthe �ltering of the initial transa
tions with the identi�ersof the results. Thus, predi
ate GeNoC-
orre
tness 
he
ksthat ea
h result 
orresponds to a transa
tion with the sameidenti�er, message and destination. We obtain the following:Theorem 1. ACL2 Corre
tness of GeNoC .(defthm GeNoC-is-
orre
t(let ((NodeSet (NodeSetGenerator pms)))(mv-let (res abt)(GeNoC Trs NodeSet att)(de
lare (ignore abt))(implies (and (Tp Trs NodeSet)(ValidParamsp pms))(GeNoC-
orre
tnessres(filter Trs (R-ids res))))))



Case 2. Pr.Obl. 8
M : m = (id A frm B)

ComputeMissives

Routing

Delayed Scheduled

Scheduling

ComputeResults
ToMissives

true

false

A : abt = (id A frm B)
R : rst = (id B msg)

SumOfAttemps(att)
?
= 0

T : t = (id A msg B)

V : v = (id frm Routes)ToMissives

GeNoCt (GeNoC nt
t )

φ(Scheduled) ∧ φ(Delayed)

Proof : by indu
tionIndu
tion StepCase 1. Pr.Obl. 9 ∧ Pr. Obl. 4.
∧ Indu
tion Hypothesis⇒ φ(Scheduled )

⇒ φ(Delayed)

Figure 3: Proof of GeNoCThis theorem is proven by indu
tion on the stru
ture offun
tion GeNoC . The indu
tive proof only 
on
erns the
omposition of fun
tions Routing and Scheduling . Thanksto proof obligation 10, the s
heduled and the delayed travels
an be proven separately. S
heduled travels have a 
orre-spondan
e with the travel list input in Scheduling (proofobligation 9). Fun
tion Routing produ
es 
orre
t routes(proof obligation 4), whi
h are still 
orre
t after Scheduling .So, frames and destinations after Scheduling mat
h the mis-sives input to fun
tion Routing . Results are mat
hed to theinitial transa
tions using the 
orre
tness of interfa
es (proofobligation 1). The delayed travels are proven using the in-du
tion hypothesis and proof obligation 8.The proof of GeNoC and its modules involves 71 fun
-tions, 119 theorems in 1864 lines of 
ode. Only one fourthof these is dedi
ated to the en
apsulation of the di�erentmodules. Most of the de�nitions and theorems 
on
ern datatypes and the proof of the overall 
orre
tness. This makes
GeNoC �relatively simple� to use, be
ause users will only be
on
erned with the modules. We import the last book onarithmeti
 developed by R. Krug and books on lists by B.Bevier.
8. METHODOLOGY AND CASE STUDIESThe generi
 model de�nes also a methodology for the spe
-i�
ation and the validation of routing algorithms, s
hedul-ing poli
ies and interfa
es. In this se
tion, we �rst give anoverview of di�erent 
on
rete instan
es of GeNoC . As a
ase study, we apply GeNoC on an XY routing algorithmin a 2D mesh.
8.1 OverviewTo show the adequa
y between our generi
 model and realappli
ations, we apply GeNoC to a litany of 
on
rete de-signs. Any 
ombination of these di�erent 
on
rete instan
esis de�ned and validated by generi
 fun
tion GeNoC , thatmeans without any additional e�ort. These 
on
rete in-stan
es are summarized in Fig 4.We have shown that the 
ir
uit [10℄ and the pa
ket [11℄swit
hing te
hniques are 
on
rete instan
es of Scheduling .Based on previous work [9℄, we proved that bus arbitrationin the AMBA AHB is also a valid instan
e of the generi
s
heduling poli
y. From Moore's work on asyn
hrony [5℄,

we proved that his model of the biphase proto
ol 
onsti-tutes a valid instan
e of the interfa
es. We have modeled anEthernet 
ontroler2 and we are investigating its 
omplian
ewith GeNoC .In the next subse
tion, we illustrate our approa
h on anXY routing algorithm, with an ACL2 oriented presenta-tion. This proof has already been presented to a generalaudien
e [11℄. The routing in the O
tagon network [4℄ -developed by STMi
roele
troni
s - also 
onstitutes a validinstan
e of our generi
 routing fun
tion. Finally, we are
urrently working on the proof that an adaptive routing al-gorithm - the double Y 
hannel algorithm in a 2D mesh - isa valid instan
e of fun
tion Routing . More details about allthese studies 
an be found in S
hmaltz's thesis [8℄.We now detail the methodology asso
iated with the rout-ing algorithm and illustrate it on an XY routing algorithm.
8.2 Case Study: XY routingRegarding the routing fun
tion, the methodology pro
eedsin two steps. First, nodes and parameters are de�ned andproven 
ompliant with the en
apsulate given in se
tion 4.Then the routing algorithm is modeled as a fun
tion thatmat
hes fun
tion Routing . In both steps, 
he
king the 
om-plian
e with the generi
 model is done by proving t as ex-plained in se
tion 3.1.
8.2.1 Mesh Node DefinitionIn a 2D mesh, a node is represented by a pair of 
oordi-nates on the X and Y axes. A pair of 
oordinates is re
-ognized by predi
ate Coordinatep. A list of 
oordinates isre
ognized by predi
ate mesh-nodesetp.Mesh parameters are the number of nodes in ea
h dimen-sion; they are re
ognized by predi
ate ValidParamsp2D. Let
NX and NY denote the number of nodes in the �rst andthe se
ond dimension. The node set, i.e. the set of 
oordi-nates from (0 , 0 ) to ((NX − 1 ), (NY − 1 )), is generated byfun
tion mesh-nsgen. It is de�ned as follows.Fun
tion XGen(NX , y) takes as arguments the number
NX of nodes in the �rst dimension and a 
onstant y in these
ond dimension. It generates all admissible pairs for that2This work has been done during a visit of the �rst authorat the University of Texas at Austin, in 
ooperation withWarren Hunt.
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rete Instan
es of GeNoCparti
ular y. Fun
tion mesh-nsgen 
omputes the 
oordi-nates by applying fun
tion XGen to all values of y rangingfrom zero to NY − 1 . To prove the main 
onstraint on thenode de�nition, we �rst prove that the generation on the Xaxis is valid, and use this fa
t prove that nodes generatedon the Y axis are valid.Theorem 2. Mesh Nodes Validation.(defthm 2d-mesh-nodesetgenerator(implies (ValidParamsp2D pms)(mesh-nodesetp (mesh-nsgen pms))))On
e this theorem is proven, we 
he
k that the 
oordi-nates are a valid instan
e of the generi
 node de�nition byproving t as explained in se
tion 3.1.
8.2.2 XY Routing AlgorithmLet s = (sx , sy ) be a node 
ontaining a pa
ket addressedto node d = (dx , dy). In the XY algorithm, the X dire
-tion has higher priority. If the X of destination d is greater(resp. less) than the X of origin s, the next node is the node
(sx + 1 , sy ) (resp. (sx − 1 , sy) ) on the X-axis. Otherwise,the X's are equal and we 
ompare the Y's: the next nodeis either (sx , sy + 1 ) or (sx , sy − 1 ) on the Y-axis. This al-gorithm is applied re
ursively to 
ompute the route from asour
e to a destination. The measure is simply the sum ofthe absolute values of the di�eren
e of the 
oordinates.Definition 1. XY Routing Algorithm(defun xy-routing (from to)(de
lare (xargs :measure (XY-measure from to)));; from = (x_o y_o) dest = (x_d y_d)(if (or (not (
oordinatep from))(not (
oordinatep to)))nil(let ((x_d (
ar to))(y_d (
adr to))(x_o (
ar from))(y_o (
adr from)))

(if (and (equal x_d x_o) ;; x_d = x_o(equal y_d y_o)) ;; y_d = y_o;; if the destination is equal to;; the 
urrent node, we stop(
ons from nil)(if (not (equal x_d x_o)) ;; x_d /= x_o(if (< x_d x_o) ;; de
reasing x(
onsfrom(xy-routing (list (- x_o 1) y_o)to));; x_d > x_o(
onsfrom(xy-routing (list (+ x_o 1) y_o) to)));; otherwise we test the y-dire
tion;; y_d /= y and x_d = x_o(if (< y_d y_o)(
onsfrom(xy-routing (list x_o (- y_o 1)) to));; y_d > y_o(
onsfrom(xy-routing (list x_o (+ y_o 1)) to))))))))We then 
ast this fun
tion su
h that it mat
hes the de�-nition of Routing :Definition 2. Mat
hing Routing.(defun XYRouting (M NodeSet)(de
lare (ignore NodeSet))(xy-routing-top M))where:(defun xy-routing-top (M)(if (endp M)nil(let* ((miss (
ar M))



(from (OrgM miss))(to (DestM miss))(id (IdM miss))(frm (FrmM miss)))(
ons (list id frm(list (xy-routing from to)))(xy-routing-top (
dr M))))))This fun
tion is a valid instan
e of the generi
 routingfun
tion of GeNoC if it 
omputes a route that satis�es pred-i
ate Corre
tRoutesp:Theorem 3. Validity of the XY algorithm.(defthm Corre
tRoutesp-XYRouting(let ((NodeSet2D (mesh-nsgen pms)))(implies (and (ValidParamsp2D pms)(Missivesp M NodeSet2D))(Corre
tRoutesp (xy-routing-top M)M NodeSet2D))))Proof. Most properties de�ned in Corre
tRoutesp arestraightforward, and the ACL2 proofs are automati
. Onlyone proof requires an intera
tion with the prover: showingthat ea
h route uses valid nodes only. The set of nodes isgenerated by fun
tion mesh-nsgen and is made of all natu-ral pairs (x , y) su
h that 0 ≤ x < NX and 0 ≤ y < NY . Theproof strategy is to show that any set of 
oordinates satisfy-ing these inequalities is a subset of NodeSet2D. Then, it suf-�
es to show that the route produ
ed by fun
tion xy-routingsatisfy these inequalities. The validation of this proof ta
ti
requires 5 lemmas et 2 additional fun
tions. The proof of the"
losure" of xy-routing on NodeSet2D requires 30 lemmas.ACL2 needs a hint for only two of them.Before 
he
king that this routing fun
tion is a valid in-stan
e of the generi
 routing fun
tion, we prove that it pro-du
es a valid travel list. This proof is obvious and not de-tailed further. On
e again, the 
omplian
e of the XY routingalgorithm with GeNoC is done by proving t.
9. CONCLUSIONSWe have presented the modeling of GeNoC in the ACL2logi
. We have shown how ACL2 
an automati
ally pro-du
e proof obligations for parti
ular instan
es of the generi
model. We kept the number of en
apsulated 
onstraints aslow as possible. Thus, the proof e�ort for parti
ular in-stan
es is minimized.The translation of our general theory in ACL2 is not di-re
t. In higher order logi
s, predi
ates over fun
tions wouldhave repla
ed the en
apsulations. Nevertheless, the fun
-tional instan
iation prin
iple automati
ally produ
es 
onje
-tures for parti
ular appli
ations. Moreover, ACL2 tries toprove them automati
ally. The user is dire
tly left with themore interesting part of the proofs. The ACL2 implementa-tion of GeNoC bene�ts greatly from these two prin
iples.On-going work at TIMA involves the appli
ation of GeNoCto wormhole routing, and the elaboration of a re�nementmethod to derive the 
orre
tness of a parti
ular hardwareimplementation.
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