Towards A Formal Theory
of On Chip Communications in the ACL2 Logic

Julien Schmaltz
Saarland University
Institute for Computer Architecture
FR 6.2 Informatik, Postfach 151150
D-66041 Saarbriicken, Germany

julien@cs.uni-sb.de

ABSTRACT

This paper is devoted to the expression of a formal theory of
communication networks in the ACL2 logic. More precisely,
we have developed a generic model called GeNoC, in a gen-
eral mathematical notation, with the use of quantification
over variables as well as over functions. We present here its
expression in the first order quantifier free logic of the ACL2
theorem prover. We describe our systematic approach to
cast it into ACL2, especially how we use the encapsulation
principle to obtain a systematic methodology to specify and
validate on chip communications architectures. We sum-
marize the different instances of GeNoC' developed so far in
ACL2, some come from industrial designs. We illustrate our
approach on an XY routing algorithm.

Categories and Subject Descriptors

F.0 [Theory of Computation|: General; B.7.2 [Integrated
Circuits|: Design Aids

General Terms

Communication theory, design and verification

Keywords

network on a chip, formal theory, theorem proving

1. INTRODUCTION

The design of complex systems on a chip (SoC) relies on
the integration of pre-existing modules. In this framework,
the overall behavior of SoC’s highly depends on the inter-
connect structure. Its design and the verification of the com-
munication architecture become crucial [12].

The principal verification efforts regarding embedded com-
munication architectures are the following. Concerning pro-
tocols dedicated to bus architectures, Roychoudhury et al.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

ACL2 06 Seattle, Washington USA

Copyright 2006 ACL2 Steering Committee 0-9788493-0-2/06/08.

Dominique Borrione
Joseph Fourier University
TIMA Laboratory - VDS Group
46, avenue Felix Viallet,
38031 Grenoble, France

Dominique.Borrione@imag.fr

use the SMV model checker to debug an academic imple-
mentation of the AMBA AHB protocol [7]. Their model
is written at the register transfer level and without any pa-
rameter. Roychoudhury et al. detect a livelock scenario that
comes more from their own arbiter than the protocol itself.
More recently, Amjad [1] used a model checker, implemented
in the HOL theorem prover, to verify the AMBA protocols
APB and AHB and their composition in a single system.
Using model checking, safety properties are verified on each
protocol. The HOL tool is used to verify their composition.
The model is also at a low level of abstraction and with-
out any parameter. Regarding networks on a chip (NoC)
little work has been done about their formal verification.
Gebremichael et al. [3] have recently specified the Athereal
protocol of Philips in the PVS logic. The main property they
verified is the absence of deadlock for an arbitrary number
of masters and slaves.

On the one hand, these studies consider design at the
register transfer level (RTL). The current trend in the SoC
design community is to raise the level of abstraction [12].
On the other hand, these studies are dedicated to particular
applications. To verify another communication network, one
has to formalize and prove everything again. Indeed, there
is no formal theory of communication networks. Most text-
book (e.g. [2]) describe architectures in an informal manner.

The objective of our research is to formalize the differ-
ent concepts that belong to communication architectures,
i.e. to define a formal theory for communication networks.
We express this theory in a classical mathematical notation.
Then, one can cast it into her/his favorite tool.

A first step towards this theory has been achieved in
Schmaltz’s Ph.D. thesis [8]. The main contribution of this
work is the definition of a generic network on a chip (GeNoC')
model. It is defined as the composition of key components
(routing, scheduling and interfaces). We have identified the
essential properties inherent in each one of them. The proof
of the overall correctness of GeNoC'is directly deduced from
these constraints. Hence, this correctness is preserved for
any particular network architecture, provided its compo-
nents satisfy the constraints.

We briefly present the general theory in section 2. This pa-
per focusses on how we embed this theory in the ACL2 logic.
For instance, the mathematical notations involve quantifi-
cation over functions which is elegantly expressed using the
encapsulation principle and the derived inference rule "func-
tional instantiation". Section 3 presents the strategy we
used to express GeNoC' in the ACL2 logic. Sections 4 to 7

expose the ACL2 definition of the components of GeNoC'.
We show concrete instances of GeNoC in section 8. Section
9 concludes the paper.

2. A GENERIC NETWORK ON CHIP

To treat the different communication architectures in a
single formalism, we generalize them to a unique model
explained in the next subsection. After that, we describe
rapidly function GeNoC' and give the general expression of
its correctness.

2.1 A Unique Communication Model

Consider the general communication model of Figure 1.
An arbitrary, but finite, number of nodes are connected to
some communication architecture. The latter represents the
interconnection structure, e.g. bus or network. It com-
prises topologies, routing algorithms and scheduling policies.
Our model makes no assumption on these components. As
proposed by Rowson and Sangiovanni-Vincentelli [6], each
node is separated into an application and an interface. The
latter is connected to the communication architecture. In-
terfaces allow applications to communicate using protocols.
Any interface-application pair matches the layers of the OSI
model. Interfaces generally refer to layers 1 to 4; applica-
tions to layers 4 to 7. Layer 4 is a boundary and can be
part of either interfaces or applications. To distinguish be-
tween interface-application and interface-interface commu-
nications, an interface and an application communicate us-
ing messages; two interfaces communication using frames.

messages

Application
mewag&sl

Communication

Architecture

Figure 1: Communication Model

Applications represent the computational and functional
aspects of nodes. They are either active or passive. Typ-
ically, active applications are processors and passive appli-
cations memories. We consider that each node contains one
passive and one active application, i.e. each node is capa-
ble of sending and receiving frames. As we want a general
model, applications are not considered ezplicitly: passive ap-
plications are not actually modeled, and active applications
are reduced to the list of their pending communication oper-
ations. We focus on communications between distant nodes.
We suppose that in every communication, the destination
node is different from the source node.

2.2 Overview of GeNoC

Function GeNoC represents a generic communication ar-
chitecture. This architecture has an arbitrary topology, rout-
ing algorithm and switching technique. Function GeNo(C'
represents the transfer of messages from their source to their
destination. Its main argument is the list of messages emit-
ted at source nodes. It returns the list of the results received

at destination nodes. Its definition mainly relies on the fol-
lowing functions:

1. Interfaces are represented by two functions; one func-
tion, send, to inject frames on the network, and one
function, recv, to receive frames,

2. the routing algorithm and the topology are represented
by function Routing,

3. the switching technique is represented by function
Scheduling.

These functions are generic in the sense that they do not
have an explicit definition. They are only defined by a
number of properties, called proof obligations or simply con-
straints.

Interfaces. Function send represents the encapsulation
of a message into a frame. Function recv represents the
decoding of this frame to recover the emitted message. The
main constraint associated to these functions expresses that
a receiver should be able to extract the encoded information,
i.e. the composition of function recv with function send
(recv o send) is the identity function.

Routing Algorithm. The routing algorithm is repre-
sented by the successive application of unitary moves. For
each pair made of a source and a destination, the routing
function computes all possible routes allowed by the uni-
tary moves. The main constraint associated to the routing
function expresses that each route from a source s to a des-
tination d effectively starts in s and uses only existing nodes
to end in d.

Switching Technique. The scheduling policy partici-
pates in the management of conflicts that appear on the
network. It defines the set of communications that can
be performed at the same time. Formally, these commu-
tations satisfy an invariant. Scheduling a communication,
i.e. adding it to the current set of authorized communica-
tions, must preserve the invariant, for all times and in any
admissible state of the network. The invariant is specific to
the scheduling policy. In our formalization of the schedul-
ing policy, the existence of this invariant is assumed but
not explicitly represented. From a list of requested commu-
nications, the scheduling function extracts a sub-list that
satisfies the invariant. The rest make up the list of delayed
communications.

Function GeNoC.‘ Function GeNoC' is pictured in Fig.
2. It takes as arguments the list of requested communi-
cations and the characteristics of the network. It produces
two lists as results: the messages received by the destination
of successful communications and the aborted communica-
tions. In the remainder of this section, we detail the basic
components of the model.

The main input of GeNoC'is a list 7 of transactions of the
form ¢t = (id A msg: B). Transaction ¢ represents the inten-
tion of application A to send a message msg; to application
B. A is the origin and B the destination. Both A and B
are members of the set of nodes, NodeSet. Each transaction
is uniquely identified by a natural id. Valid transactions are
recognized by predicate Tis, (7, NodeSet).

Briefly, function GeNoC' works as follows. For every mes-
sage in the initial list of transactions, it computes the cor-
responding frame using send. Each frame together with its
id, origin and destination constitutes a missive. A missive
is valid if the ids are naturals (with no duplicate); the origin

Scheduling

Node A Interface

Node B Interface

Node A
Application

Frames

Node B
Frames f------------- Messages o
Application

Node A

Node B

Routing

Figure 2: GeNo(C': A generic network on chip model

and the destination are members of NodeSet. A valid list, M
of missives is recognized by predicate M s, (M, NodeSet).
Then, GeNoC computes the routes of the missives and sched-
ules them using functions Routing and Scheduling. To keep
our model general, function Routing computes a list of routes
for every missive. If the routing algorithm is deterministic,
this list has only one element. Once routes are computed,
a travel denotes the list composed of a frame, its id and
its list of routes. A list V of travels is valid if the ids are
naturals (with no duplicate). Such a list is recognized by
predicate Vi, (V). The results of the scheduled travels are
computed by calling recv. The delayed travels are converted
back to missives and constitute the argument of a recursive
call to GeNoC. To make sure that this function terminates,
we associate to every node a finite number of attempts. At
every recursive call of GeNoC, every node with a pending
transaction will consume one attempt. The association list
att stores the attempts and att[i] denotes the number of re-
maining attempts of the node 7. Function SumOfAtt(att)
computes the sum of the remaining attempts of the nodes
and is used as the decreasing measure of parameter att.
Function GeNoC halts if every attempt has been consumed.
The first output list R contains the results of the completed
transactions. Every result 7 is of the form (id B msgr) and
represents the reception of a message msg, by its final desti-
nation B. Transactions may not run to completion (e.g. due
to network contention). The second output list of GeNoC
is named Aborted and contains the cancelled transactions.

Function GeNoC'is considered correct if every non aborted
transaction ¢ = (id A msg B) is completed in such a way that
B effectively receives msg. Formally, we prove that for every
final result r, there is a unique initial transaction ¢ such that
t has the same id and msg as r.

Idgr(rst) = Id7(t)
Vrst e R, € T, { N Msggp(rst) = Msg,(t) (1)
A Destr(rst) = Destr(t)

This formula is proved a theorem using the proof obliga-
tions associated to each component. These proof obligations
have often the same structure. For all elements produced by
some function (here function GeNoC') we look for a unique
element in the principal argument of that function (here the
transactions) such that both elements satisfy a given prop-

erty. We do not go further into the mathematical transla-
tion. In the next section, we explain how we translate it
to the ACL2 logic. Then, we give all ACL2 definitions and
constraints about GeNoC, as well as its proof of correctness.
The mathematical model has been published elsewhere [8].

3. MODELING PRINCIPLES

Functions Routing, Scheduling, recv and send are not de-
fined but constrained to satisfy a list of properties. In the
following subsection, we show how to use the encapsulation
principle to express this second order quantification. Using
functional instantiation, ACL2 can generate the proof obli-
gations that must be discharged by a particular instance of
a component. We show how to systematically use that rule
for design verification.

3.1 Encapsulation of the Constraints

Function send takes a message as a unique argument and
returns a frame. No assumption is made on the definition
domains, Dy and Dy, of messages and frames. Functions
send and recv, in the ACL2 logic, are functions taking one
argument and returning one argument. They have the fol-
lowing signatures:

((send *) = x)
((recv *) = *)

The main constraint on these functions is that their com-
position is an identity. This is expressed by the following
proof obligation:

Proor OBLIGATION 1. Interface Correctness
(defthm InterfaceCorrectness
;3 recv o send(msg) = msg
(equal (recv (send msg)) msg))

For technical reasons, two other constraints are associated
to function send. The first one states that if nothing has to
be sent, function send returns the empty list (constraint
send-nil). The second constraint states that if the message
to be sent is not the empty list, function send does not
return the empty list (constraint send-not-nil).

The complete encapsulate event regarding the interfaces
is as follows:

(encapsulate
(((send *) = %)
((recv *) = *))
(local (defun send (msg) msg)) ;; local witness
(local (defun recv (frm) frm)) ;; local witness
(defthm InterfaceCorrectness
(equal (recv (send msg)) msg))
(defthm send-nil
(not (send nil)))
(defthm send-not-nil
(implies msg (send msg))))

Using the functional instantiation inference rule, ACL2
generates - and tries to prove - the proof obligations asso-
ciated to particular definitions of recv and send. Let us
redefine these functions outside the encapsulate. Consider
function send. that starts a communication by sending a
constant bit list to synchronize with a receiver. Let this
constant be *start* = (0 1 0 1 0 1 0 1). To satisfy con-
straint send-nil, this function returns nil if its input mes-
sage is nil. Its definition is the following:

(defun send. (msg)
(if (not msg)
nil
(append *start* msg))

Function recv. reads a bit list 1st. If this list is empty, it
returns nil. If the first 8 bits equal *start#*, it returns 1st
less these first 8 bits. Otherwise, it consumes one bit and
looks for *start* in the rest of 1st. Its definition is:

(defun recv. (1st)
(if (endp 1lst)
nil
(if (equal (firstn 8 1lst) *startx)
(nthcdr 8 1st) ;; 1lst less *startx*
(recve (cdr 1st)))))

The proof obligations associated to these two definitions
can be automatically generated (and proved) by ACL2. The
principle is to prove some property (the constant t for in-
stance) and to give a hint to ACL2 that forces it to use the
properties of the encapsulate above. We ask ACL2 to prove
the following theorem:

(defthm check-instance-interface
t ; we prove "true"
:rule-classes nil ; no rule is generated
:hints (("GOAL"
; we force ACL2 to use InterfaceCorrectness
; by substituting recv by recve
; and send by sende
iuse
(:functional-instance InterfaceCorrectness
(recv recve)
(send sende)))))

A similar approach is taken to check if concrete designs of
functions Routing or Scheduling are valid instances of their
generic counterparts. The encapsulate event about these
remaining components are described in the next section.

3.2 Removing Quantifiers

The ACL2 logic is generally considered quantifier free.
The formulae presented in the previous section do not trans-
late directly into ACL2. The principle is to express quan-
tifiers by recursive functions. Let us consider the formula
Vz € E,p(z), which means that all elements in set F satisfy
predicate p. In ACL2, we rather consider a list, the elements
of which are in . We define a function f, which verifies
that all elements of a list satisfy p. The definition of f, is
the following:

A (T ifl=c¢
fo(l) = { p(e) A fp(I') otherwise I =e.l’ (2)

Let [C; E mean [is a list, the elements of which are in
set E. Property Vz € E,p(x) becomes VI,l C; E, fp(l). In
the ACL2 syntax, this is expressed by an implication:

(defthm foo
(implies (Ep 1) (fp, 1))

where Ep is a predicate that recognizes a list, the elements
of which are members of E.

More generally, the main formulae of GeNoC express prop-
erties about a list L, and the result F(L) of the application
of a function to that list. These properties express that for
all elements €’ of a list F(L) , there exists a unique element
e of L such that e and ¢’ satisfy some property v (e,e’). The
formula takes the following form:

Ve' €, F(L),3e € L,(e,e) (3)

Lists L and F(L) are lists of missives, travels, transac-
tions, etc. Formula 1) always involves the equality between
the identifiers of e and e’. The uniqueness of element e is
ensured by the type information that guarantees the unique-
ness of the identifiers of elements of L (resp. F(L)). Filter-
ing list L according to the identifiers of (L), one obtains a
list that can be compared with F(L) element by element.

The filtering operator is illustrated as follows. If V is a list
of travels, V/ids denotes a sublist of V, which is the result
of filtering V according to some identifiers ids.

ExAaMPLE 1. IfV is

((123 m1 (139))
(212 ms (12 4 25))
(313 m3 (112 3)))

then V/(123 313) is

((123 m1 (139))
(313 ms (112 3)))

Let fy be a Boolean function over two argument lists. fy
returns ¢ if the arguments have equal length and property ¥
holds pairwise on their corresponding elements; otherwise,
fy returns nil. The definition of f, is:

t ifli=enla=c¢
nil ifll#e/\lzze
Vii=€eAls 75 €
¥(e,€) A fy(lh,15) otherwise l; = e.l}
ANl =€ l}

foll,l2) £

'For the existential quantifier, the conjunction is replaced
by a disjunction.

Let D, be the definition domain of list L. Expressions
of the form 3, "for all e’ of F(L), there exists a unique e
of L such that (e, e’)", translate to "for all lists L of Dy,
function fy applied to list F(L) and to L filtered by the
identifiers of F(L) is always true". That is expressed as:

VL Ci Dy, fu(F(L), L/ F (L) ia) (4)

Finally, the universal quantifier is replaced by an implica-
tion and we get the following form:

LG Dr = fu(F(L), L/ F(L) i) (5)

In the ACL2 syntax, the left hand side of the implication
is translated to the characteristic function of domain Dy,
noted Dr-p. Let filter be the ACL2 function implement-
ing the filtering operator, and ids be the function collecting
the identifiers, one obtains the following ACL2 code:

(defthm bar
(implies (Dr-p L)
(fy (F L)
(filter L (ids (F L))))))

4. NODES AND PARAMETERS

We now describe all functions and theorems that form the
encapsulation event for the definition of the nodes and the
parameters.

Nodes are defined on an arbitrary domain, GenNodeSet.
A list of elements of that domain is recognized by predi-
cate NodeSetp, which is a constrained function. The set
of nodes of a particular network is noted NodeSet. It is
generated from parameters pms defined on an arbitrary do-
main GenParams and function NodeSetGen. Valid param-
eters are recognized by predicate ValidParamsp and consti-
tute the generating base for NodeSet. The functionality of
NodeSetGen is as follows:

NodeSetGen : GenParams — P(GenNodeSet) (6)

These functions are valid if, for all parameters recognized
by predicate ValidParamsp, every element produced by func-
tion NodeSetGen belongs to domain GenNodeSet (i.e. sat-
isfies predicate NodeSetp):

Proor OBLIGATION 2. Definition of NodeSet.
(defthm nodeset-generates-valid-nodes
(implies (ValidParamsp pms)
(NodeSetp (NodesetGenerator pms))))

Finally, we need to prove that, for each particular instance
of predicate NodeSetp, any sublist of a valid list of nodes is
also a valid list of nodes

PrROOF OBLIGATION 3. Sublists of Valid Node Lists.
(defthm subsets-are-valid
(implies (and (NodeSetp x) (subsetp y x))
(NodeSetp y)))

5. ROUTING ALGORITHM

We now describe the function definitions and theorems for
the routing module of GeNoC'. The correctness of routes is
not particular to a network. In the next subsection, we de-
fine the general predicates that will be used for any routing
algorithm. Then, we give the constraints associated with
the routing function.

5.1 Route Validity

A route 7 is correct according to some missive m if (1)
the first element of r equals the origin of m; (2) the last
element of r equals the destination of m; (3) each node of
r is a member of the set NodeSet of the existing nodes.
The lengh of any route must be greater than 2. Among
these properties, one only depends on NodeSet. To avoid
free variables, we state it in a separate predicate. The other
properties are defined as follows:

(defun ValidRoutep (r m)
(and (equal (car r) (OrgM m))
(equal (car (last r)) (DestM m))
(<= 2 (len 1))))

Function CheckRoutes takes a list of routes, a missive and
the set NodeSet. It checks that any route of the list of routes
satisfies ValidRoutep and is a member of NodeSet.

(defun CheckRoutes (routes m NodeSet)
(if (endp routes)
t
(let ((r (car routes)))
(and (ValidRoutep r m)
(subsetp r NodeSet)
(CheckRoutes (cdr routes) m NodeSet)))))

Predicate CorrectRoutesp checks travels correctness ac-
cording to missives, i.e. routes associated to some travel
v satisfies predicate CheckRoutes for some missive m such
that v and m have the same identifier and the same frame.
We also check that the list of travels and the list of missives
have the same length.

(defun CorrectRoutesp (V M NodeSet)
(if (endp V)
(if (endp M)
t ;; len(M) = len(V)
nil)
(let* ((tr (car V))

(msv (car M))
(routes (RoutesV tr)))

(and (CheckRoutes routes msv NodeSet)
(equal (IdV tr) (IdM msv))
(equal (FrmV tr) (FrmM msv))
(CorrectRoutesp (cdr V)

(cdr M) NodeSet)))))

This predicate implies that converting the travel list V to

a missive list produces M.

(defthm correctroutesp-=>-tomissives
(implies (and (CorrectRoutesp V M NodeSet)
(Missivesp M NodeSet)
(Vistp V))
(equal (ToMissives V) M)))

5.2 Generic Routing Function

The generic routing function takes two arguments: a mis-
sive list and the existing nodes. It returns a travel list. Its
signature is the following:

(((Routing * %) => %))

The local witness of the encapsulate simply corresponds
to routing in a bus. There is only one route made of the

origin and the destination. In the following definition, func-
tions IdM, FrmM, OrgM, DestM are the accessors of the various
components of a missive: identifier, frame, origin, destina-
tion.

;3 local witness
(local (defun route (M)
(if (endp M)
nil
(let* ((msv (car M))
(Id (IdM msv))
(frm (FrmM msv))
(org (OrgM msv))
(dest (DestM msv)))
(cons (list Id frm
(list (list org dest)))
(route (cdr M)))))))
(local (defun routing (M NodeSet)
(declare (ignore NodeSet))
(route M)))

The main constraint on function Routing states that it
must satisfy predicate CorrectRoutesp.

ProoF OBLIGATION 4. Routing Correctness

(defthm Routing-CorrectRoutesp
(let ((NodeSet (NodeSetGenerator pms)))
(implies (and (Missivesp M NodeSet)
(ValidParamsp pms))
(CorrectRoutesp (Routing M NodeSet)
M NodeSet))))

Another constraint checks that this function outputs a
valid travel list.

ProoF OBLIGATION 5. Type of function Routing

(defthm Vlstp-routing
(let ((NodeSet (NodeSetGenerator pms)))
(implies (and (Missivesp M NodeSet)
(ValidParamsp pms))
(V1stp (routing M NodeSet)))))

We have shown the main constraints on function Routing.
Some local lemmas on the witness are necessary. There are
two additional constraints. One that checks that function
Routing outputs a true list. Another one checks that func-
tion Routing returns nil if the initial missive list is empty.

6. SCHEDULING POLICY

In the next subsection, we introduce the generic definition
of the scheduling policy. Then, we give its associated proof
obligations.

6.1 Generic Definition

Function Scheduling takes as arguments the travel list pro-
duced by function Routing and the list att of the attempt
numbers at the nodes. It returns two travel lists: the list
Scheduled and the list Delayed. It also updates the attempt
number list att. The functionality of Scheduling is the fol-
lowing;:

Scheduling : Dy x AttLst — Dy x Dy x AttLst (7)
Its ACL2 signature is the following:

((scheduling * *) => (mv * * x))

For every scheduled travel of a missive that has several
routes, the scheduling function generally keeps only one route.
In order to avoid the introduction of a new data type, we
consider scheduled travels like "classical" travels, i.e. trav-
els that contain a list of routes, even if this list has only one
element.

The local witness is very simple but fully fullfils its duty.
If the sum of all attemps is zero, all travels are delayed.
Otherwise, all travels are scheduled and each node with
at least one attempt left consumes one attempt (function
consume-attempts).

(local
(defun scheduling (V att)

;3 local witness

(mv

;3 scheduled frames

(if (zp (SumOfAttempts att))
nil ;; no attempt left, no schedule

V) ;; otherwise all scheduled

;3 delayed frames

(if (zp (SumOfAttempts att))
V ;; no attempt left, all delayed

nil) ;; otherwise no delayed
(if (zp (SumOfAttempts att))
att ;; no attempt left, att unchanged
(consume-attempts att))))) ;; consume att

6.2 Proof Obligations

First, if the list V is a valid travel list, the lists Scheduled
and Delayed are also valid.

PROOF OBLIGATION 6. Type of Scheduled and Delayed.

(defthm Vlstp-scheduled-delayed
(implies (Vlstp V)
(and
(V1stp (mv-nth O (scheduling V att)))
(Vlstp (mv-nth 1 (scheduling V att))))))

At each scheduling round, all travels of V are analyzed.
If several travels are associated to a single node, this node
consumes one attempt for the set of its travels. At each call
to Scheduling, an attempt is consumed at each node. If all
attempts have not been consumed, the sum of the remain-
ing attempts after the application of function Scheduling is
strictly less than the sum of the attempts before the applica-
tion of Scheduling. This is expressed by the following proof
obligation:

ProOF OBLIGATION 7. Consume one attempt.

(defthm consume-at-least-one-attempt
(mv-let (Scheduled Delayed newatt)
(scheduling V att)
(declare (ignore Scheduled Delayed))
(implies (not (zp (SumOfAttempts att)))
(< (SumOfAttempts newatt)
(SumOfAttempts att)))))

The delayed travels are converted to missives in the recur-
sive call of GeNoC'. This process should result in a sublist of
the initial list of missives. To obtain a valid missive list, the

information contained in the delayed travels must be iden-
tical to the information contained in the initial list V. The
list of the delayed travels must be a sublist of V. Formally,
one ensures that list Delayed is equal to filtering the ini-
tial travel list according to the identifiers of Delayed. That
corresponds to the following proof obligation:

Proor OBLIGATION 8. Correctness of Delayed.

(defthm delayed-travel-correctness

(mv-let

(Scheduled Delayed newatt)

(scheduling V att)

(declare (ignore newatt scheduled))
(implies (Vlstp V)

(equal Delayed
(filter V
(v-ids Delayed)))))

:rule-classes nil)

This rule is likely to introduce loops in the rewriter because
Delayed appears in the left and the right hand side. There-
fore, we do not store it as a rule.

Generally, the scheduling function only keeps one route
for every scheduled travel. Consequently, the list Scheduled
is not exactly a sublist of the initial travel list V. The iden-
tifiers and the frames are not modified. We check that the
route, or more generally, the routes of a scheduled travel be-
long to the routes associated with the corresponding initial
travel.

Let us consider predicate s-travel-correctness. It takes
as arguments two travel lists sV and V/sids. It checks that
these lists have an equal length. It recursively checks that
each element of sV has the same identifier, the same frame
of the corresponding element in V/sids. It also recursively
checks that routes of elements of sV are part of the routes
of corresponding elements in V/sids. The definition of this
predicate is the following:

(defun s-travel-correctness (sV V/sids)
(if (endp sV)
(if (endp V/sids)
t
nil)
(let* ((str (car sV))
(tr (car V/sids)))
(and (equal (FrmV str) (FrmV tr))
(equal (I4V str) (I4V tr))
(subsetp (RoutesV str) (RoutesV tr))
(s-travel-correctness (cdr sV)
(cdr V/sids))
)DD))

The constraint regarding the scheduled travels states that
this predicate must be satisfied if sV is the list of the sched-
uled travels and V/sids is the initial travel list filtered ac-
cording to the identifiers of the scheduled travels.

Proor OBLIGATION 9. Correctness of Scheduled.
(defthm scheduled-travels-correctness
(mv-let (Scheduled Delayed newatt)
(scheduling V att)
(declare (ignore Delayed newatt))
(implies (Vlstp V)

(s-travel-correctness
Scheduled
(filter V
(V-ids Scheduled))))))

Since routes of travels in Scheduled are routes of travels of
V, function Scheduling preserves the correctness of routes.
We prove outside the encapsulate that the list Scheduled
satisfies predicate CorrectRoutesp.

The goal of the scheduling policy is to partition a travel
list into two exclusive lists: Scheduled and Delayed. The in-
tersection of the identifiers of these two lists must be empty.

Proor OBLIGATION 10. Mutual Exclusion.

(defthm not-in-delayed-scheduled
(mv-let (scheduled delayed newatt)
(scheduling V att)
(declare (ignore newatt))
(implies (Vlstp V)
(not-in (v-ids delayed)
(v-ids scheduled)))))

We have exposed the main constraints about function
Scheduling. For technical reasons, additional constraints
are necessary. To apply function mv-nth properly, function
Scheduling needs to return a list of values. This property
is not added by ACL2 from the signature. We also need to
know that lists Scheduled and Delayed are true lists.

7. OVERALL MODEL

The definition of function GeNoC follows Figure 3. Func-
tion ComputeMissives applies function send to each trans-
action of the initial list 7. This produces the correspond-
ing list of missives. Function Routing computes the routes
of each missive and function Scheduling fixes the scheduled
and the delayed travels. Function ComputeResults applies
function recv to each scheduled travel to obtain results. De-
layed travels are converted to missives. If all attempts have
not been consumed, delayed travels are processed again from
function Routing. Otherwise, delayed travels constitute the
aborted communications.

The correctness of function GeNoC' has been defined in
section 2, with respect to results only. As explained in sec-
tion 3, quantifiers are replaced by predicates on lists. In
ACL2, the correctness of GeNoC' concerns the results and
the filtering of the initial transactions with the identifiers
of the results. Thus, predicate GeNoC-correctness checks
that each result corresponds to a transaction with the same
identifier, message and destination. We obtain the following:

THEOREM 1. ACL2 Correctness of GeNoC.

(defthm GeNoC-is-correct
(let ((NodeSet (NodeSetGenerator pms)))
(mv-let (res abt)

(GeNoC Trs NodeSet att)

(declare (ignore abt))

(implies (and (Tp Trs NodeSet)

(ValidParamsp pms))

(GeNoC-correctness
res
(filter Trs (R-ids res))))))

T:t=(id A msg B)

ComputeMissives
""""""""""""""" Mim— (A By GeNoGy! (GeNoCpt)
Routing Proof : by induction
Induction Step
I o ¢(Scheduled) N ¢(Delayed)
ToMissives Vv = (id frm Routes) Case 1. Pr.ObL. 9 A Pr. Obl. 4.
= ¢(Scheduled)
Scheduling Case 2. Pr.Obl. 8
Jalse A Induction Hypothesis
>
ESumOfAttemps(att) = J%Delayed Scheduled = ¢(Delayed)
""""" trae| o Clompute Results
ToMissives

A:abt = (id A frm B)

R : rst = (id B msg)

Figure 3: Proof of GeNo(C

This theorem is proven by induction on the structure of
function GeNoC. The inductive proof only concerns the
composition of functions Routing and Scheduling. Thanks
to proof obligation 10, the scheduled and the delayed travels
can be proven separately. Scheduled travels have a corre-
spondance with the travel list input in Scheduling (proof
obligation 9). Function Routing produces correct routes
(proof obligation 4), which are still correct after Scheduling.
So, frames and destinations after Scheduling match the mis-
sives input to function Routing. Results are matched to the
initial transactions using the correctness of interfaces (proof
obligation 1). The delayed travels are proven using the in-
duction hypothesis and proof obligation 8.

The proof of GeNoC' and its modules involves 71 func-
tions, 119 theorems in 1864 lines of code. Only one fourth
of these is dedicated to the encapsulation of the different
modules. Most of the definitions and theorems concern data
types and the proof of the overall correctness. This makes
GeNoC ‘“relatively simple” to use, because users will only be
concerned with the modules. We import the last book on
arithmetic developed by R. Krug and books on lists by B.
Bevier.

8. METHODOLOGY AND CASE STUDIES

The generic model defines also a methodology for the spec-
ification and the validation of routing algorithms, schedul-
ing policies and interfaces. In this section, we first give an
overview of different concrete instances of GeNoC. As a
case study, we apply GeNoC on an XY routing algorithm
in a 2D mesh.

8.1 Overview

To show the adequacy between our generic model and real
applications, we apply GeNoC to a litany of concrete de-
signs. Any combination of these different concrete instances
is defined and validated by generic function GeNoC, that
means without any additional effort. These concrete in-
stances are summarized in Fig 4.

We have shown that the circuit [10] and the packet [11]
switching techniques are concrete instances of Scheduling.
Based on previous work [9], we proved that bus arbitration
in the AMBA AHB is also a valid instance of the generic
scheduling policy. From Moore’s work on asynchrony [5],

we proved that his model of the biphase protocol consti-
tutes a valid instance of the interfaces. We have modeled an
Ethernet controler? and we are investigating its compliance
with GeNoC.

In the next subsection, we illustrate our approach on an
XY routing algorithm, with an ACL2 oriented presenta-
tion. This proof has already been presented to a general
audience [11]. The routing in the Octagon network [4] -
developed by STMicroelectronics - also constitutes a valid
instance of our generic routing function. Finally, we are
currently working on the proof that an adaptive routing al-
gorithm - the double Y channel algorithm in a 2D mesh - is
a valid instance of function Routing. More details about all
these studies can be found in Schmaltz’s thesis [8].

We now detail the methodology associated with the rout-
ing algorithm and illustrate it on an XY routing algorithm.

8.2 Case Study: XY routing

Regarding the routing function, the methodology proceeds
in two steps. First, nodes and parameters are defined and
proven compliant with the encapsulate given in section 4.
Then the routing algorithm is modeled as a function that
matches function Routing. In both steps, checking the com-
pliance with the generic model is done by proving t as ex-
plained in section 3.1.

8.2.1 Mesh Node Definition

In a 2D mesh, a node is represented by a pair of coordi-
nates on the X and Y axes. A pair of coordinates is rec-
ognized by predicate Coordinatep. A list of coordinates is
recognized by predicate mesh-nodesetp.

Mesh parameters are the number of nodes in each dimen-
sion; they are recognized by predicate ValidParamsp2D. Let
Nx and Ny denote the number of nodes in the first and
the second dimension. The node set, i.e. the set of coordi-
nates from (0, 0) to (Nx — 1),(Ny — 1)), is generated by
function mesh-nsgen. It is defined as follows.

Function XGen(Nx,y) takes as arguments the number
Nx of nodes in the first dimension and a constant y in the
second dimension. It generates all admissible pairs for that

2This work has been done during a visit of the first author
at the University of Texas at Austin, in cooperation with
Warren Hunt.

Scheduling

Network Scheduling Policies

- Circuit Switching
- Packet Switching

Bus Arbitration

Node A Interface

- AMBA AHB Arbiter

Node B Interface

ffffffffffffff Frames

Frames -------------

OSI Layer 1

Deterministic Routing

- Bi-®-M - Octagon
OSI Layer 2 Routing - XY routing
- Ethernet Adaptive Routing

- Double Y Channel

Figure 4: Concrete Instances of GeNoC

particular y. Function mesh-nsgen computes the coordi-
nates by applying function XGen to all values of y ranging
from zero to Ny — 1. To prove the main constraint on the
node definition, we first prove that the generation on the X
axis is valid, and use this fact prove that nodes generated
on the Y axis are valid.

THEOREM 2. Mesh Nodes Validation.

(defthm 2d-mesh-nodesetgenerator
(implies (ValidParamsp2D pms)
(mesh-nodesetp (mesh-nsgen pms))))

Once this theorem is proven, we check that the coordi-
nates are a valid instance of the generic node definition by
proving t as explained in section 3.1.

8.2.2 XY Routing Algorithm

Let s = (sz, 8y) be a node containing a packet addressed
to node d = (ds, dy). In the XY algorithm, the X direc-
tion has higher priority. If the X of destination d is greater
(resp. less) than the X of origin s, the next node is the node
(82 + 1,sy) (resp. (sz — 1,sy)) on the X-axis. Otherwise,
the X’s are equal and we compare the Y’s: the next node
is either (sz, sy + 1) or (Sz, sy — 1) on the Y-axis. This al-
gorithm is applied recursively to compute the route from a
source to a destination. The measure is simply the sum of
the absolute values of the difference of the coordinates.

DEerFINITION 1. XY Routing Algorithm

(defun xy-routing (from to)
(declare (xargs :measure (XY-measure from to)))
;5 from = (x_o y_o) dest = (x_d y_d)
(if (or (not (coordinatep from))
(not (coordinatep to)))
nil
(let ((x_d (car to))
(y_d (cadr to))
(x_o (car from))
(y_o (cadr from)))

(if (and (equal x_d x_o) ;; x_.d = x_0
(equal y_d y o)) ;; y.d =y_o
;3 if the destination is equal to
;3 the current node, we stop
(cons from nil)

(if (not (equal x_d x_0)) ;; x.d /= x_o
(if (< x_d x_o) ;; decreasing x
(cons
from
(xy-routing (list (- x_o 1) y_o)
to))
;5 x.d > x_o
(cons
from

(xy-routing (list (+ x_o 1) y_o) to)))
;3 otherwise we test the y-direction
;3 yod /=y and x_d = x_o
(if (< y_d y_o)
(cons
from
(xy-routing (list x_o (- y_o 1)) to))
35 y-d > y_o
(cons
from
(xy-routing (list x_o (+ y_o 1)) to))))
))))

‘We then cast this function such that it matches the defi-
nition of Routing:

DEFINITION 2. Matching Routing.

(defun XYRouting (M NodeSet)
(declare (ignore NodeSet))
(xy-routing-top M))

where:

(defun xy-routing-top (M)
(if (endp M)

nil
(let* ((miss (car M))

(from (OrgM miss))
(to (DestM miss))
(id (IaM miss))
(frm (FrmM miss)))
(cons (1list id frm
(list (xy-routing from to)))
(xy-routing-top (cdr M))))))

This function is a valid instance of the generic routing
function of GeNoC' if it computes a route that satisfies pred-
icate CorrectRoutesp:

TueEOREM 3. Validity of the XY algorithm.

(defthm CorrectRoutesp-XYRouting
(let ((NodeSet2D (mesh-nsgen pms)))
(implies (and (ValidParamsp2D pms)
(Missivesp M NodeSet2D))
(CorrectRoutesp (xy-routing-top M)
M NodeSet2D))))

ProOOF. Most properties defined in CorrectRoutesp are
straightforward, and the ACL2 proofs are automatic. Only
one proof requires an interaction with the prover: showing
that each route uses valid nodes only. The set of nodes is
generated by function mesh-nsgen and is made of all natu-
ral pairs (z, y) such that 0 <z < Nx and 0 < y < Ny. The
proof strategy is to show that any set of coordinates satisfy-
ing these inequalities is a subset of NodeSet2D. Then, it suf-
fices to show that the route produced by function xy-routing
satisty these inequalities. The validation of this proof tactic
requires 5 lemmas et 2 additional functions. The proof of the
"closure" of xy-routing on NodeSet2D requires 30 lemmas.
ACL2 needs a hint for only two of them. [

Before checking that this routing function is a valid in-
stance of the generic routing function, we prove that it pro-
duces a valid travel list. This proof is obvious and not de-
tailed further. Once again, the compliance of the XY routing
algorithm with GeNoC' is done by proving t.

9. CONCLUSIONS

We have presented the modeling of GeNoC' in the ACL2
logic. We have shown how ACL2 can automatically pro-
duce proof obligations for particular instances of the generic
model. We kept the number of encapsulated constraints as
low as possible. Thus, the proof effort for particular in-
stances is minimized.

The translation of our general theory in ACL2 is not di-
rect. In higher order logics, predicates over functions would
have replaced the encapsulations. Nevertheless, the func-
tional instanciation principle automatically produces conjec-
tures for particular applications. Moreover, ACL2 tries to
prove them automatically. The user is directly left with the
more interesting part of the proofs. The ACL2 implementa-
tion of GeNoC benefits greatly from these two principles.

On-going work at TIMA involves the application of GeNoC
to wormhole routing, and the elaboration of a refinement
method to derive the correctness of a particular hardware
implementation.

10. ACKNOWLEDGMENTS

The authors would like to thank J Strother Moore, Matt
Kaufmann and Warren Hunt for valuable remarks and help-
ful advice.

11.
[1]

2]

13l

[4]

[5]

[6]

7]

18]

[9]

[10]

[11]

[12]

REFERENCES

H. Amjad. Model Checking the AMBA Protocol in
HOL. Technical report, University of Cambridge,
Computer Laboratory, September 2004.

W. Dally and B. Towles. Principles and Practices of
Interconnection Networks. Morgan-Kaufmann
Publisher, 2004.

B. Gebremichael, F. Vaandrager, M. Zhang,

K. Goossens, E. Rijpkema, and A. Radulescu.
Deadlock Prevention in the Athereal protocol. In

D. Borrione and W. Paul, editors, Correct Hardware
Design and Verification Methods (CHARME’05),
volume 3725 of LNCS, pages 345 348, 2005.

K. Karim, A. Nguyen, and S. Dey. An Interconnect
Architecture for Networking Systems On Chip. IEEE
Micro, pages 36 45, September-October 2002.

J. S. Moore. A Formal Model of Asynchronous
Communications and Its Use in Mechanically
Verifying a Biphase Mark Protocol. Formal Aspects of
Computing, 6(1):60-91, 1993.

J. Rowson and A. Sangiovanni-Vincentelli.
Interface-Based Design. In 84'" Design Automation
Conference (DAC’96), pages 178-183, 1997.

A. Roychoudhury, T. Mitra, and S. Karri. Using
Formal Techniques to Debug the AMBA
System-on-Chip Bus Protocol. In Design Automation
and Test Europe (DATE’03), pages 828 833, 2003.

J. Schmaltz. Une formalisation fonctionnelle des
communsications sur la puce. PhD thesis, Joseph
Fourier University, Grenoble, France, January 2006. In
French. A partial translation is available upon request
to the first author.

J. Schmaltz and D. Borrione. Verification of a
Parameterized Bus Architecture Using ACL2. In
Proceedings of the Fourth International Workshop on
the ACL2 Theorem Prover and its Applications, April
2003.

J. Schmaltz and D. Borrione. A Functional Approach
to the Formal Specification of Networks on Chip. In
A. Hu and A. Martin, editors, Formal Methods in
Computer-Aided Design (FMCAD’04), volume 3312 of
LNCS, pages 52-66, Austin, Tx, USA, November
2004. Springer-Verlag.

J. Schmaltz and D. Borrione. A Generic Network on
Chip Model. In T. Melham and J. Hurd, editors,
Theorem Proving in Higher Order Logics
(TPHOLs’05), volume 3603 of LNCS, pages 310-325,
Oxford, UK, August 2005. Springer-Verlag.

G. Spirakis. Beyond Verification: Formal Methods in
Design. In A. Hu and A. Martin, editors, Formal
Methods in Computer-Aided Design (FMCAD’04),
volume 3312 of LNCS, Austin, Texas, USA, November
2004. Springer-Verlag. Invited Speaker.

