
Adding Parallelism Capabilities to ACL2

David L. Rager
Department of Computer Sciences, The University of Texas at Austin

ragerdl@cs.utexas.edu

ABSTRACT
We have implemented parallelism primitives that permit an
ACL2 programmer to parallelize execution of ACL2 func-
tions. We (1) introduce logical definitions for these primi-
tives, (2) explain the features of our extension, (3) give an
evaluation strategy for our implementation, and (4) use the
parallelism primitives in examples to show speedup.

Categories and Subject Descriptors
D.1 [Programming Techniques]: Concurrent Program-
ming—parallel programming ; D.2.4 [Software Engineer-
ing]: Software/Program Verification—correctness proofs,
formal methods; D.3.2 [Programming Languages]: Lan-
guage Classifications—applicative (functional) languages

General Terms
verification, performance

Keywords
parallel ACL2, functional language, plet, pcall, pand, por,
granularity

1. INTRODUCTION
One of ACL2’s strengths lies in its ability to efficiently

execute industrial-sized models. As multi-core CPUs [1] be-
come commonplace, we want to take advantage of the avail-
able hardware resources.

We introduce four parallelism primitives: pcall, plet,
pand, and por. Pcall is logically the identity macro. With
pcall, the arguments of a function can be evaluated in par-
allel. Plet allows parallel evaluation of variable bindings.
Pand and por are similar to the ACL2 macros and and or

but different in the aspects outlined in sections 2.3 and 2.4.
We then discuss three features of our parallelism exten-

sion. First, with recursive use of the parallelism primitives,
our extension can adapt to the data so that a function’s

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ACL2 ’06 Seattle, Washington USA
Copyright 2006 ACL2 Steering Committee 0-9788493-0-2/06/08.

computation does not serialize when the data is asymmet-
ric. Second, we provide a means to specify a criterion for
determining granularity. This helps the system determine
when arguments to a function are complex enough to war-
rant parallel evaluation. Third, when issuing a pand or por,
our system recognizes opportunities for early termination
and returns from evaluation.

Next we explain our evaluation strategy. We first describe
how we determine when parallelism resources are available.
If resources are unavailable, the parallelism primitive ex-
pands to its serial equivalent. We also explain our imple-
mentation of work consumers.

At the end of the paper, performance results are illus-
trated by using the parallelism primitives with a näıve Fi-
bonacci function, boolean if normalization, and mergesort.

Much related work has been done in the area of functional
language parallelism. Some of this work includes futures and
primitives like pcall [10, 3]. Also Hunt and Moore provide
a partial implementation for an ACL2 parallelism extension
using futures [private communication] [4].

2. PARALLELISM PRIMITIVES
We consider two goals in the use of our parallelism prim-

itives. First, users need a way to efficiently parallelize com-
putation in functions they execute. Second, the use of par-
allelism primitives should be as logically transparent as pos-
sible. With these goals in mind, we present each primitive’s
semantics and provide examples of usage.

Any function that uses parallelism primitives must have
its guards defined and verified before it can execute with
parallelism [8]. To save space, guards have been omitted
from most examples in this paper, but the full definitions
can be found in the supporting scripts.

2.1 Pcall
The first primitive, pcall, is logically the identity macro.

Pcall takes a function call whose arguments it may evaluate
in parallel and then applies the function to the results of that
parallel evaluation. A simple example is as follows:

(defun pfib (x)
(cond ((or (zp x) (<= x 0)) 0)

((= x 1) 1)
(t (pcall (binary-+ (pfib (- x 1))

(pfib (- x 2)))))))

In this example, (pfib (- x 1)) and (pfib (- x 2))

can be evaluated in parallel, and then binary-+ will be ap-
plied to the list formed from their evaluation. If the pro-

grammer uses pcall in a function whose argument evalua-
tions always require a large amount of time, the user will
experience speedup. As explained in section 3.2, a granular-
ity form can be used to limit when parallelism is introduced.

Since macros can change expressions in unexpected ways,
we disable the pcall’ing of macros. While it may be pos-
sible to reliably expand macros using the LISP function
macroexpand, we have avoided it so far. If a user wishes
to parallelize computation of arguments to a macro, we sug-
gest they use plet instead.

2.2 Plet
The second primitive, plet, is logically equivalent to the

macro let. Under the hood, plet evaluates the binding
computations in parallel and applies a closure created from
the body of the plet to the results of these binding evalua-
tions. A simple example is as follows:

(defun pfib (x)
(cond ((or (zp x) (<= x 0)) 0)

((= x 1) 1)
(t (plet ((fibx-1 (pfib (- x 1)))

(fibx-2 (pfib (- x 2))))
(+ fibx-1 fibx-2)))))

As with pcall, the evaluations for bindings fibx-1 and
fibx-2 occur in parallel, and then the closure containing +

is applied. A feature of plet is that its body’s top level call
can be a macro. This is because the closure will have all its
arguments evaluated before it is applied.

2.3 Pand
The third primitive, pand, is fundamentally different from

and. Pand evaluates its arbitrary number of arguments in
parallel, evaluates their conjunction, and returns a boolean
result. From this definition, we note two differences. First,
we return a boolean result. This makes it consistent with
por, which we describe later. The second difference is that
the truth or falsity of the evaluation of the first argument
does not prevent the evaluation of the second argument.

Consider call: (pand (consp x) (equal (car x) ’foo)).
With pand both (consp x) and (equal (car x) ’foo) can
execute in parallel. With and, the falsity of (consp x) pre-
vents the evaluation of (car x). Our logical definition of
pand does not provide (consp x) as a guard to (car x).

As an example, suppose we have a function valid-tree

which traverses a tree, testing each atom to make sure it is
a valid-tip. We can write a parallel version as follows:

(defun valid-tree (x)
(if (atom x) (valid-tip x)

(pand (valid-tree (car x))
(valid-tree (cdr x)))))

Once one of the arguments evaluates to nil, we can re-
turn nil without waiting for the other arguments to finish
evaluation. This feature is called early termination and is
explained in section 3.3.

2.4 Por
In the same way as pand, the fourth primitive, por, is fun-

damentally different from or. Por evaluates its arguments in
parallel, evaluates their disjunction, and returns a boolean
result. Since the evaluation order of parallel computation
can be nondeterministic, it is safest to consistently return a

boolean value rather than risk providing different results for
por calls with the same argument list. Similar to pand, por
guards computation in a different way than or.

Suppose we have the macro call: (por (atom x) (equal

(car x) ’foo)). We can see that with por both (atom x)

and (equal (car x) ’foo) can execute in parallel. With
or, the truth of (atom x) prevents the evaluation of (car
x). Our logical definition of por does not provide (not

(atom x)) as a guard to (car x).

3. FEATURES
A discussion of some user-level features follows.

3.1 Data Dependent Parallelism
When computing results on symmetric data, it is often

easy to accurately partition resources. For example, if we
have two CPU cores available for processing, we split the
computation at the top recursive level and create two pieces
of parallel work. However, when the data is asymmetric, the
evaluation of one piece may terminate significantly before
the other piece, effectively serializing computation. To be
more concrete, take the following function that counts the
leaves of a tree:

(defun naive-pcount (x)
(if (atom x) 1

(pcall (binary-+ (acl2-count (car x))
(acl2-count (cdr x))))))

If we give this function a tree shaped like a list, we realize
quickly that splitting computation only at the first recursive
level and not parallelizing again after one of the recursions
terminates will result in an almost serial computation.

It turns out that the solution fits quite naturally into
ACL2. The user must simply define functions to recur into
functions that use the parallelism primitives. Whenever a
primitive is encountered and resources are available, the sys-
tem will parallelize computation. See section 4.1 for an ex-
planation of resource availability.

3.2 Granularity Form
When computing functions like the näıve Fibonacci, some

inputs are large enough to warrant computing the arguments
in parallel, while other inputs are too small to be worth
the cost of parallelism overhead. For example, consider the
definition of Fibonacci found in section 2.1. Experiments
on our machine indicate that whenever x is less than thirty,
that we should call a serial version of the Fibonacci function.
This could require two definitions of the function, e.g.,

(defun fib (x)
(cond ((or (zp x) (<= x 0)) 0)

((= x 1) 1)
(t (binary-+ (fib (- x 1))

(fib (- x 2))))))

(defun pfib (x)
(cond ((or (zp x) (<= x 0)) 0)

((= x 1) 1)
((< x 30) (binary-+ (fib (- x 1))

(fib (- x 2))))
(t (pcall (binary-+ (pfib (- x 1))

(pfib (- x 2)))))))

We realize quickly that writing both of these function def-
initions is both cumbersome and redundant. As such, the

user can provide a granularity form with each parallelism
primitive. When using the granularity form, the system
will only parallelize computation if (1) resources are avail-
able and (2) the dynamic evaluation of the granularity form
returns non-nil. Below is a definition of the Fibonacci func-
tion using a granularity form. To conform with LISP stan-
dards, the syntax of the granularity-form is a type of perva-
sive declaration [7].

(defun pfib (x)
(cond ((or (zp x) (<= x 0)) 0)

((= x 1) 1)
(t (pcall (declare (granularity-form (>= x 30)))

(binary-+ (pfib (- x 1))
(pfib (- x 2)))))))

We can also declare a granularity form with an extra ar-
gument that describes the call depth of the function the user
is parallelizing. Take mergesort as an example. Mergesort

splits the data into symmetric chunks for computation, so we
increment the depth argument during the recursive call on
both the car and cdr. A parallelized version of mergesort
based on Davis’s Ordered Sets library [5] can be found in
the supportive scripts.

A less intrusive method involves analyzing the data itself
for structural properties. When we define the function that
performs boolean if normalization, we will define nthcar, a
function similar to nthcdr to examine the input if expression
and determine granularity.

3.3 Early Termination
When computing an ACL2 and, due to lazy evaluation,

some of the arguments to the and may never be evaluated.
When we evaluate arguments to a pand in parallel, even
more opportunity for skipping work is available. Consider
the following function that computes whether a tree is valid:

(defun pvalid-tree (x)
(if (atom x) (valid-tip x)

(pand (pvalid-tree (car x))
(pvalid-tree (cdr x)))))

We would like to stop execution as soon as any tip is found
to be invalid. So, when computing the conjunction of terms
by using pand, once one of those terms evaluates to nil, all
sibling computations are aborted and the pand returns nil.
The user can experience superlinear speedup when a nil is
beyond the first argument to the pand.

The concept of early termination also applies to por, ex-
cept that the early termination condition is when an argu-
ment evaluates to non-nil.

4. EVALUATION STRATEGY
Below is an explanation of some implementation details

that make up our evaluation strategy. It is not meant to
be complete, in the sense that it enables someone to dupli-
cate our work. It is intended to introduce the user to the
underlying system.

4.1 Estimating Resource Availability
There are two resources to manage: CPU cores and work

consumers (threads in our implementation). CPU cores can
be in one of two states: busy and idle. Work consumers can
be in one of three states: stalled, active, and pending. A work
consumer is stalled whenever it is waiting either for a CPU

core to become available or for work to enter the parallelism
system. A work consumer can only be active when it has
been allocated a CPU core and is actively processing a piece
of work. If a work consumer encounters a parallelism prim-
itive and parallelizes its evaluation, it will enter the pending
state until its children finish, when it becomes active again.
The goal is to keep CPU cores busy and avoid overwhelming
the operating system (OS) with work consumers.

A conceptual work queue contains pieces of work and is
organized into four sections: unassigned (U), started (S),
waiting (W), and resumed (R). The first section stores unas-
signed work not yet acquired by a work consumer. The
started section contains the pieces of work associated with
an active thread that have not encountered an opportunity
for parallelism. If a piece of work encounters a parallelism
primitive and splits its work, the work will enter the waiting
stage, as it waits for its children to finish. After the work’s
children finish, it resumes computation and return the re-
sult. Figure 1 illustrates the relationships between pieces of
work, cores, and consumers.

Figure 1: Life Cycle of a Piece of Work
Work State U S W* R*

Allocated Core no yes no yes
Consumer State n/a active pending active

*the writing and resumed states are not always entered.

4.1.1 Limiting Active Consumers
We limit the number of active work consumers to match

the number of CPU cores. Once a work consumer finishes
a piece of work, if there is work in the unassigned section,
it will immediately acquire another piece of work. Limiting
the number of active work consumers in this way minimizes
context switching overhead [6].

4.1.2 Keeping CPU Cores Busy
Whenever a work consumer acquires a CPU core resource,

the consumer will immediately acquire work from the unas-
signed section and begin processing it. If there is no work
in the unassigned section, the work consumer will stall until
work is added. If parallelism opportunities had recently oc-
curred but had reverted to their serial equivalents because
all CPU cores were busy, this stalling would be wasted time.
To avoid this, we treat the unassigned portion as a buffer
and aim to keep at least p pieces of work in it at all times.
We set p to the number of CPU cores, so that if all con-
sumers finish simultaneously, they can acquire a new piece
of work. Figure 2 shows the limits we impose for a system
with p CPU cores.

Figure 2: Lengths of Work Queue Sections

unassigned started + resumed waiting on children

| – ≥ p – | —– = p —– |

| —————————– ≤ 50 —————————— |

4.1.3 Limiting Total Workload
Since the OS supports a limited number of work con-

sumers, we must impose restrictions to ensure application
stability. To demonstrate how execution could surpass the

limit, suppose we have a function that counts the leaves of
a tree, as below:

(defun pcount (x)
(if (atom x) 1

(pcall (binary-+ (pcount (car x))
(pcount (cdr x))))))

If we call this function on a heavily right-skewed tree, e.g.,
a list of length 100,000, then due to the short time required
to count the car’s, the computation may parallelize every
few cdr recursions. This creates a deeply nested call stack
with potentially thousands of pcall parents waiting on their
pcount children.

Since (1) the stack of parents waiting on children can only
unroll itself by the children finishing evaluation and (2) any
piece of work allowed into the system must eventually be
allocated to a work consumer, unless we build in a limit to
prevent additional work from being added when the maxi-
mum number of work consumers has been reached, the sys-
tem will become unstable or deadlock. In OpenMCL, we
have found a reasonable limit to be around 50. As shown in
figure 2, we limit the total count of work to 50.

4.2 Work Consumer Implementation
We use threads to implement work consumers for the fol-

lowing reasons. First, threads share memory, which is good
for our target: the SMP desktop market. Second, threads
are lighter-weight than processes, lending themselves to finer-
granularity problems.

Of the LISPs that support native threads and build ACL2,
OpenMCL and SBCL provide threading primitives suffi-
cient to implement our parallelism extension as described
in this paper. Finally, to save time associated with spawn-
ing threads, we recycle them.

5. PERFORMANCE RESULTS
We evaluate our parallelism extension on a dual-CPU

Power Mac G5, where each CPU contains two 2.5 GHz cores
with 1 MB of L2 cache each. This Mac has six gigabytes of
DDR2 memory and runs OS X version 10.4.6. We compile
our extended ACL2 on a development copy of OpenMCL
1.1. With this setup, “perfect parallelism” would compute
parallelized ACL2 functions in one quarter of their serial
time. All times reported in this section are an average of
three consecutive executions.

We present three tests. First, we define a doubly recursive
version of the Fibonacci function. We choose the Fibonacci
computation, because it is well known and it demonstrates
our ability to adapt to asymmetric parallel computation.
By this we mean that the computation for the first recur-
sive call takes more time than the second recursive call.
Our double recursive definition is inefficient, but it serves
as a baseline for determining whether our system experi-
ences speedup that increases linearly with respect to the
number of CPU cores. The Fibonacci function is compu-
tation heavy and does not create much garbage, allowing
an accurate measurement of parallelism overhead and the
effects of granularity.

Running three trials of (fib 47) on the machine described
above requires an average of 323 seconds, while (pfib 47)

requires an average of 86 seconds. The speedup factor of
3.78 implies that we gain 95% of our potential speedup.

We also evaluate our parallelism extension using boolean if
normalization. Unlike the Fibonacci function, the boolean if
normalization algorithm is tied to useful functions [2]. Find-
ing a good granularity form for boolean if normalization is a
difficult challenge. In our example, we examine the structure
of the if expression. Using this structure-based granularity
form, we obtain a non-GC speedup of 1.77 on a ten bit ripple
carry adder.

Is it more meaningful to examine the total time or the time
spent outside the garbage collector? On one hand, only total
execution time is relevant. On the other, since OpenMCL
does not have a parallelized garbage collector [9], the best
we can hope for is a speedup factor of four for the non-GC’d
portion. We therefore focus our efforts on the non-GC time.

These garbage collection issues can lead to surprising re-
sults. Even the highly parallelizable algorithm mergesort

may trigger the garbage collector too often to experience
significant overall speedup. Below is a table of results, in-
cluding measurements for mergesort as defined in the sup-
portive scripts.

Table 1: Performance Test Results (seconds)

Case Total GC Non-GC Total Non-GC
Time Time Time Speedup Speedup

Fib
Serial 325.88 0.00 325.88
Parallel 86.11 0.07 86.05 3.78 3.79

If Norm
Serial 71.28 9.68 61.60
Parallel 65.84 30.97 34.87 1.08 1.77

Sort
Serial 24.50 12.41 12.10
Parallel 23.91 19.79 4.12 1.025 2.934

6. FUTURE WORK
We have ported the parallelism extension to SBCL, but

it still functions best in OpenMCL. In the future, we want
to make the SBCL implementation as efficient as the Open-
MCL implementation. We also plan on integrating the ex-
tension into the main ACL2 distribution.

Future applications include integrating parallelism into
the theorem proving process, possibly via relieving hypothe-
ses during backchaining in parallel. Another option is to
prove subgoals in parallel. ACL2’s ability to save proof out-
put for delayed printing is a step towards meeting this goal.

7. CONCLUSION
The four parallelism primitives are: pcall, plet, pand,

and por. These primitives allow linear speedup of exe-
cution for functions that generate little garbage and have
large granularity. Functions whose granularity varies can
use a granularity form to ensure parallelism only occurs with
larger computations. Since OpenMCL has a serial garbage
collector, functions whose execution time is dominated by
garbage collection will not experience as much speedup.

8. ACKNOWLEDGEMENTS
We thank Warren Hunt Jr. for supervising this work and

for contributing the idea of recycling threads. Additionally,
we thank Matt Kaufmann for creating an ACL2 compilation
flag that makes mv and mv-let thread safe. We also thank
him for looking over the parallelism design and implementa-
tion, making detailed suggestions, and reviewing this paper
many times. We thank Gary Byers for providing OpenMCL
level threading primitives and helping us understand Open-
MCL’s threading environment. We thank J Strother Moore,
Robert Boyer, Sandip Ray, and Jared Davis for their gen-
eral support and help with other issues. Finally, we recog-
nize the National Science Foundation for funding this work
under grant CNS 0429591.

9. REFERENCES
[1] AMD. Introducing multi-core technology. On the

Web, April 2006.
http://multicore.amd.com/en/Technology/.

[2] Robert S. Boyer and J Strother Moore. A
Computational Logic. Academic Press, Inc., 1979.

[3] Richard P. Gabriel and John McCarthy. Queue-based
multi-processing lisp. In Conference on LISP and
Functional Programming, pages 25–44, 1984.

[4] Jr. Henry G. Baker and Carl Hewitt. The incremental
garbage collection of processes. In Symposium on
Artificial Intelligence and Programming Languages,
pages 55–59, 1977.

[5] Jared Davis. Finite Set Theory based on Fully
Ordered Lists. In Fifth International Workshop on the
ACL2 Theorem Prover and Its Applications
(ACL2-2004), November 2004.

[6] S. L. Peyton Jones. Parallel implementations of
functional programming languages. The Computer
Journal, 32(2):175–186, 1989.

[7] Guy L. Steele Jr. Common Lisp the Language. Digital
Press, second edition, 1990.

[8] Matt Kaufmann and J Strother Moore. Miscellaneous
remarks about guards. On the Web, April 2006.
http://www.cs.utexas.edu/users/moore/acl2/v2-
9/GUARD-MISCELLANY.html.

[9] OpenMCL. The Ephemeral GC, April 2006.
http://openmcl.clozure.com/Doc/The-Ephemeral-
GC.html.

[10] Jr. Robert H. Halstead. Implementation of multilisp:
Lisp on a microprocessor. In Conference on LISP and
Functional Programming, pages 9–17, 1984.

