
Double Rewriting for Equivalential Reasoning in ACL2

Matt Kaufmann
University of Texas at Austin

kaufmann@cs.utexas.edu

J Strother Moore
University of Texas at Austin

moore@cs.utexas.edu

ABSTRACT
Several users have had problems using equivalence-based
rewriting in ACL2 because the ACL2 rewriter caches its re-
sults. We describe this problem in some detail, together with
a partial solution first implemented in ACL2 Version 2.9.4.
This partial solution consists of a new primitive, double-

-rewrite, together with a new warning to suggest possible
use of this primitive.

Categories and Subject Descriptors
F.4.1 [Mathematical Logic and Formal Languages]:
Mathematical Logic—computational logic, mechanical theo-
rem proving

General Terms
Verification

Keywords
Verification, formal methods, rewriting, congruences, equiv-
alence relations, double-rewrite

1. INTRODUCTION
Several users have had problems using equivalence-based

rewriting in ACL2 because the ACL2 rewriter caches its re-
sults. We describe this problem in some detail, together
with a partial solution first implemented in ACL2 Version
2.9.4 that employs a new primitive, double-rewrite, to-
gether with a new warning to suggest possible use of this
primitive.

Section 2 begins with a very brief review of congruence-
based rewriting that is intended to make this paper reason-
ably self-contained. It then presents a simple example that
illustrates the problem and shows a solution using the new
primitive, double-rewrite. Logically, this is the identity
function: thus (double-rewrite x) is equal to x. However,
the ACL2 rewriter treats a call (double-rewrite u) in a

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ACL2 ’06 Seattle, Washington USA
Copyright 2006 ACL2 Steering Committee 0-9788493-0-2/06/08.

special manner: it first rewrites u in the current context,
and then it rewrites the result. We explain this point in
more detail with an example in aforementioned Section 2
and with a careful specification of double-rewrite in Sec-
tion 3.

It is asking a lot of the user to identify when it is neces-
sary to decorate terms in rewrite rules with double-rewrite.
Therefore, ACL2 provides warnings when such calls may be
indicated. We explain and illustrate this point in Section 4.
We then show in Section 5 how to use warnings to discover
missing congruence rules.

We conclude in Section 6 with discussion that suggests
possible future work.

Above, we refer to this work as a partial solution. Ideally,
ACL2 would automatically insert calls of double-rewrite,
either explicitly or implicitly, without input from the user.
An example below, in the concluding section, shows the po-
tential inefficiency of inserting every double-rewrite call
mentioned in a warning. One purpose of this paper is to
encourage the ACL2 community to keep in mind the prob-
lem of automating the insertion of double-rewrite calls as
they go about their own work, and to communicate to us
any ideas towards a solution.

2. THE PROBLEM
The ACL2 congruence-based rewriter takes a term α, a

substitution σ, an equivalence relation equiv, and some as-
sumptions γ (arising for example from hypotheses of the
goal and from governing assumptions from the if-structure
of the surrounding term). It returns a term β such that

(implies γ (equiv α/σ β))

is an ACL2 theorem. The rewriter maintains a set of known
equivalence relations, equiv, for which it suffices to replace
the input term with one that is equiv to it. Any of these
may serve as the equivalence relation equiv above.

Further background on ACL2’s congruence-based rewrit-
ing is worked into explanation of the example below. See
also [1] or the ACL2 documentation [2] for more leisurely
and thorough introductions to congruence-based rewriting
in ACL2. Some ACL2 users find congruence-based rewrit-
ing to be an essential capability for their use of ACL2.

The following example, based on one sent to us by Dave
Greve, is explained below.

(defun equiv (x y)

(equal x y))

(defequiv equiv)

(defund pred (x) (equal x 17))

(defcong equiv iff (pred x) 1)

(encapsulate ((f (x) t) (g (x) t) (h (x) t))

(set-ignore-ok t)

(set-irrelevant-formals-ok t)

(local (defun f (x) (pred x)))

(local (defun g (x) 17))

(local (defun h (x) 17))

(defthm pred-h (pred (h x)))

(defthm g-to-h (equiv (g x) (h x)))

(defthm pred-implies-f

(implies (pred x) (f x))))

; Fails!

(defthm f-of-g

(f (g y)))

One might expect the proof f-of-g to succeed as follows.
The rewriter first attempts to rewrite (g y) but leaves this
term unchanged: rule g-to-h does not apply because we
do not know that it suffices to maintain equiv in the first
argument of f. Then one might expect rewriting of (f (g

y)) to complete as follows.

1. Match with rule pred-implies-f. So it suffices to
relieve (i.e., rewrite to t) the instantiated hypothesis
(pred (g y)).

2. The defcong rule above allows rewriting of (g y) in
a context where it suffices to maintain equiv. So rule
g-to-h rewrites (g y) to (h y).

3. Rewrite (pred (h y)) to t using rule pred-h.

So, why does the proof of f-of-g fail?
The problem is that we have ignored the substitution ar-

gument of the rewriter. Here is a more accurate description
of the rewriting of (f (g y)).

1. Match with rule pred-implies-f. So it suffices to re-
lieve the hypothesis (pred x) with x bound to (g y).

2. The defcong rule above allows us to rewrite x, with
x bound to (g y), in a context where it suffices to
maintain equiv. Since we are rewriting a variable (i.e.,
x), the result is obtained by looking up the binding of
that variable, which yields (g y).

3. Attempt to apply lemmas to complete the rewrite of
(pred (g y)). None apply; return (pred (g y)), thus
failing to relieve the hypothesis of pred-implies-f.

In brief, the problem is that (g y) was originally left un-
changed by the rewriter in a context where equiv was not
being maintained, and this result was cached by binding x

to (g y). This sort of caching is important in general for
efficiency of the rewriter. Unfortunately, in this case subse-
quent rewriting was just a matter of looking up x to get (g

y), without any further rewrite of (g y).
A solution is provided by using function double-rewrite

to create an improved version of rewrite rule pred-implies-f:

(defthm pred-implies-f-better

(implies (pred (double-rewrite x)) (f x)))

With this rule, we do better than Step 2 above.

1. Match with rule pred-implies-f-better. So it suf-
fices to relieve the hypothesis (pred (double-rewrite

x)) with x bound to (g y).

2. The defcong rule above allows us to rewrite (double-

-rewrite x), with x bound to (g y), in a context
where it suffices to maintain the equivalence relation
equiv.

(a) Rewrite x, with x bound to (g y), obtaining (g

y) as before.

(b) The double-rewrite call now directs us to rewrite
that result, (g y), in the empty binding environ-
ment, still maintaining equiv. Hence rule g-to-h

applies, yielding (h y).

3. Rewrite (pred (h y)) to t using rule pred-h.

We invite the interested reader to execute the form

(trace$ (rewrite :entry (take 2 arglist))

(rewrite-with-lemma

:entry

(list (car arglist)

(cadr (access rewrite-rule

(cadr arglist)

:rune)))))

in the ACL2 loop, before proving (f (g y)). This will
show the steps described above, where the first argument
of rewrite and of rewrite-with-lemma is the term to be
rewritten, the second argument of rewrite is the binding
context, and the second argument shown for rewrite-with-
-lemma is the name of the lemma being applied.1 Rewrite

returns a structure (mv rewritten-term ttree) and re-

write-with-lemma returns a structure (mv success-flag

rewritten-term ttree), where ttree is a structure that
records the rewrite rules used.

3. SPECIFICATION OF DOUBLE REWRIT-
ING IN ACL2

Logically, double-rewrite is the identity function, i.e.,
(double-rewrite x) is equal to x. However, the ACL2
rewriter treats calls of double-rewrite in the following spe-
cial manner. When it encounters a term (double-rewrite

u), it first rewrites u in the current environment (with the
same equivalence relations being maintained and the same
bindings). Then, the rewriter rewrites the result in the
empty binding environment (but again with the same equiv-
alence relations being maintained).

ACL2 handles a common case automatically, without the
need to call double-rewrite: namely, the term is a vari-
able that is either the entire hypothesis or, more gener-
ally, a branch of the top-level IF structure of a hypothe-
sis. The following example illustrates this point: foo-holds
applies to prove the final theorem, even without a call of
double-rewrite in the hypothesis of foo-holds. Note also
that there is no “double-rewrite” warning when submit-
ting foo-holds.

(encapsulate (((foo *) => *) ((bar *) => *))

(local (defun foo (x) (declare (ignore x)) t))

(local (defun bar (x) (declare (ignore x)) t))

(defthm foo-holds

(implies x (equal (foo x) t)))

1Some calls may be missing because of tail recursion elimi-
nation by the compiler.

(defthm bar-holds-propositionally

(iff (bar x) t)))

(thm (foo (bar y)))

4. WARNINGS
In this section we attempt to provide a deeper understand-

ing of the need for double-rewrite, by explaining when
ACL2 produces corresponding warnings.

Recall the following lemma from Section 2, which we ul-
timately improved by replacing its hypothesis with (pred

(double-rewrite x)).

(defthm pred-implies-f

(implies (pred x) (f x)))

This lemma illustrates a problem with our solution: How
does the user know to insert a call of double-rewrite? It
seems unreasonable to expect this need to be obvious to
the user, so it seems critical to report such situations. In
the example above, therefore, we see the following warning
when ACL2 processes the event pred-implies-f, and we
see “double-rewrite” in the summary “Warnings” string at
the end of the surrounding encapsulate event.2

ACL2 Warning [Double-rewrite] in (DEFTHM

PRED-IMPLIES-F ...): In a :REWRITE rule generated

from PRED-IMPLIES-F, equivalence relation EQUIV is

maintained at one problematic occurrence of

variable X in the first hypothesis, but not at any

binding occurrence of X. Consider replacing that

occurrence of X in the first hypothesis with

(DOUBLE-REWRITE X). See :doc double-rewrite for

more information on this issue.

This warning suggests exactly the call of double-rewrite
that we added. How did ACL2 figure this out? It considered
the occurrence of x that will be bound when rewriting with
the above rule, and noted that it is in a context where equal-
ity is (of course) maintained but equiv is not. Yet, equiv is
maintained in the occurrence of x in the hypothesis, because
of the defcong event shown in the example above.

ACL2 warns on missing calls of double-rewrite for vari-
ables occurring in hypotheses of rewrite rules and linear
rules. When does it produce such warnings?

In general, ACL2 warns when it finds a non-binding occur-
rence of a bound variable in a context that is maintaining a
known equivalence relation, such that no binding occurrence
of that variable is in such a context. Binding variable occur-
rences are initially those in the left-hand side of a rewrite
rule or a maximal (trigger) term of a linear rule. The only
binding variable occurrences in hypotheses are as follows.
First, a hypothesis of the form (equal var term) binds the
variable var if it is not already bound and all variables oc-
curring free in term are already bound. Second, a hypothesis
of the form (equiv var (double-rewrite term)) binds the
variable var if equiv is a known equivalence relation, var
is not yet bound, and all variables occurring free in term

are already bound. We require the double-rewrite call in
the latter case for the sake of backward compatibility. For
example, if we treat all calls of other equivalence relations

2The warning is slightly different in ACL2 Version 2.9.4, but
has been implemented to appear as shown in subsequent
versions.

like calls of equal, then the proof fails for this event from
:mini-proveall: (defcong perm iff (mem x y) 2).

Again, such warnings are avoided in the situation de-
scribed at the end of the preceding section.

We produce “double-rewrite” warnings for the right-hand
side of the conclusion of a rewrite rule, as well as for the
conclusion of a linear rule, in analogy to how we produce
warnings for the hypotheses.3 Consider the following exam-
ple. If the double-rewrite call is omitted in rule1, then we
will get a warning and the proof will fail for the final thm.

(skip-proofs

(progn

(defstub equiv1 (x y) t)

(defequiv equiv1)

(defstub c (x) t)

(defstub e (x) t)

(defstub f (x) t)

(defstub g (x) t)

(defstub h (x) t)

(defstub i (x) t)

(defthm rule1 (equiv1 (e x) (double-rewrite x)))

(defthm rule2 (equiv1 (f x) (g x)))

(defcong equiv1 equal (h x) 1)

(defthm rule3

(implies (h (double-rewrite x)) (c x)))

(defthm rule4 (h (g a)))))

(thm (c (e (f a))))

Let us look carefully at the proof of the final thm above,
understanding that when we are relieving hypotheses, we
make just one pass through the rewriter.

1. Match (c (e (f a))) with rule3, binding x to (e (f

a)).

2. Attempt to rewrite the hypothesis (h (double-rewrite

x)) of rule3 to t, where x is bound to (e (f a)).

3. Rewrite (double-rewrite x) with x bound to (e (f

a)), in a context where it suffices to maintain equiv1

because we dove into the argument of h. The result is
a term u obtained as follows:

(a) Look up x and then apply double-rewrite to
rewrite (e (f a)), still maintaining equiv1. The
argument (f a) is left unchanged by the rewriter
(note that equiv1 is not being maintained be-
cause of the surrounding call of e).

(b) Apply rule1 to rewrite (e x) with x bound to (f

a), maintaining equiv1.

(c) If rule1 had a right-hand side of x, then the re-
sult u would be (f a), obtained by looking up
the binding of x. But the double-rewrite call
invokes the rewriter on (f a), still maintaining
equiv1, to yield u = (g a) by rule2.

4. It remains then to rewrite (h u). Since u is (g a),
rule4 applies to yield t. But if u had been (f a) as
discussed above, then rule4 would not apply and the
hypothesis of rule3 would ultimately rewrite to (h (f

a)), not t.

3This extra functionality is not present in ACL2 Version
2.9.4, but has been implemented for subsequent versions.

Note that there is a way to get the thm proved without
putting a double-rewrite on the right-hand side of rule1.
The way is to put two double-rewrites in rule3, i.e., turn
it into:

(defthm rule3

(implies (h (double-rewrite (double-rewrite x)))

(c x)))

But you can’t predict how many nested double-rewrites
you’ll need, so we view the “fault” as lying with rule1. Here
is the warning we get with rule1 if the double-rewrite call
is omitted there.

ACL2 Warning [Double-rewrite] in (DEFTHM RULE1

...): In a :REWRITE rule generated from RULE1,

equivalence relation EQUIV1 is maintained at one

problematic occurrence of variable X in the

right-hand side, but not at any binding occurrence

of X. Consider replacing that occurrence of X in

the right-hand side with (DOUBLE-REWRITE X). See

:doc double-rewrite for more information on this

issue.

5. DISCOVERING CONGRUENCE RULES
The “Double-rewrite” warnings described above provide

feedback that is useful for the discovery of congruence rules.
We illustrate how this works using an example pulled from
supporting materials file mini-proveall-plus.lisp, which
has a few others as well.

Consider the following congruence rule and its associated
expansion. It says that the perm-equivalence class of a cons

term is preserved when replacing the term’s second argu-
ment, Y, with a perm-equivalent argument, Y-EQUIV.

ACL2 !>:trans1 (defcong perm perm (cons x y) 2)

(DEFTHM PERM-IMPLIES-PERM-CONS-2

(IMPLIES (PERM Y Y-EQUIV)

(PERM (CONS X Y)

(CONS X Y-EQUIV)))

:RULE-CLASSES (:CONGRUENCE))

Now suppose we submit the following event.

(defthm insert-is-cons

(perm (insert a x) (cons a x)))

Note that perm is maintained at x in (cons a x) because of
the above congruence rule. However, with no similar congru-
ence rule for perm and insert, we get the following warning.

ACL2 Warning [Double-rewrite] in (DEFTHM

INSERT-IS-CONS ...): In a :REWRITE rule generated

from INSERT-IS-CONS, equivalence relation PERM is

maintained at one problematic occurrence of

variable X in the right-hand side, but not at any

binding occurrence of X. Consider replacing that

occurrence of X in the right-hand side with

(DOUBLE-REWRITE X). See :doc double-rewrite for

more information on this issue.

The warning is suggesting that when the rule is applied,
then the instantiated argument x of insert will have been
rewritten while maintaining only equality, so the resulting
occurrence of that x in the cons term generated from the
right-hand side might miss legal rewrites, using rules with

equivalence relation perm. The warning suggests a solution:
insert double-rewrite around x on the right-hand side so
that such perm-based rewrites will be done on x. But a dif-
ferent solution is to arrange that the second (x) argument
of insert had already been rewritten maintaining perm.
The second form below then no longer produces a “Double-
rewrite” warning, because now perm is maintained at both
occurrences of x, not just the one on the right-hand side.

(defcong perm perm (insert a x) 2)

(defthm insert-is-cons[again-no-warn]

(perm (insert a x) (cons a x)))

6. CONCLUSION
The current ACL2 regression suite was developed before

the implementation of double-rewrite and associated warn-
ings. Over 1300 “double-rewrite” warnings have occurred
in the regression suite, which may seem to suggest that one
can ignore such warnings. However, this work was motivated
by a need for the support provided by double-rewrite in
the work done by Dave Greve at Rockwell Collins.

The associated supporting materials provide several ex-
amples that illustrate “double-rewrite” warnings and the use
of double-rewrite.

At this point we leave it to the user to decide, based on
experimentation, whether or not to insert calls of double-

-rewrite suggested by associated warnings. A little ex-
perimentation of our own convinced us that it is can be
too expensive to do double rewriting automatically. For ex-
ample, consider the following commands, where the first is
abbreviated from the defpkg command in books/finite-

-set-theory/set-theory.acl2.

(defpkg "S" ...)

(ld "finite-set-theory/set-theory.lisp"

:dir :system :ld-skip-proofsp t)

(in-package "S")

:ubt! tl-pair

(acl2::time$ (defthm tl-pair

(= (tl (pair x y)) y)))

The defthm event takes more than 100 times as long (73
seconds vs. less than 0.6 seconds on the same machine) after
loading a patch that automatically inserts calls of double-

-rewrite in rewrite rules wherever ACL2 warns that such
calls may be appropriate (see Section 4).

We welcome suggestions for how to automate the insertion
of calls of double-rewrite without unacceptably slowing
down proofs.

Acknowledgments
We thank Dave Greve of Rockwell Collins, Inc. for many
useful discussions that led us to the development of this
work. We also appreciate discussions on this topic with oth-
ers members of the ACL2 community over time, including
Vernon Austel and Eric Smith. This material is based upon
work supported by DARPA and the National Science Foun-
dation under Grant No. CNS-0429591.

7. REFERENCES
[1] B. Brock, M. Kaufmann, and J S. Moore. Rewriting

with equivalence relations in ACL2. In preparation.

[2] M. Kaufmann and J S. Moore. The ACL2 home page.
http://www.cs.utexas.edu/users/moore/acl2/.

