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ABSTRACT
We describe an embedding of the ACL2 logic into higher-
order logic. An implementation of this embedding allows
ACL2 to be used as an oracle for higher-order logic provers.

Categories and Subject Descriptors
F.4.1 [Mathematical Logic and Formal Languages]:
Mathematical Logic—computational logic, mechanical theo-
rem proving ; D.3.1 [Programming Languages]: Formal
Definitions and Theory—semantics

General Terms
Languages, Security, Theory, Verification

Keywords
Verification, formal methods, logic, ACL2, HOL, HOL4,
first-order logic, higher-order logic, sound translation, proof
oracle

1. INTRODUCTION
We describe an embedding of the ACL2 logic [6, 5] into

higher-order logic (HOL). The basis for our translation is a
HOL theory, SEXP, which consists of an S-expression data
type, sexp, together with translations of ACL2 primitives
that operate on sexp. Specifically, SEXP is built in the fol-
lowing three steps:

1. hand-define the sexp data type;

2. hand-define translations of the built-in undefined func-
tions; (car, binary-*, and so on);

3. automatically translate built-in defined functions from
ACL2 source file axioms.lisp.

We also discuss translation of user-supplied ACL2 defini-
tions and theorems into HOL. The key logical property is
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that theorems of any extension of ACL2’s built-in ground-
zero theory are translated to theorems of a corresponding
extension of HOL’s SEXP theory. The key requirement guar-
anteeing this property is that ACL2 axioms are translated
to formulas of SEXP that are provable in HOL. Then ACL2
theorems will translate to HOL theorems because ACL2’s
first-order rules of inference correspond to valid HOL rules
and HOL provides induction support that we believe to be
at least as strong as ACL2’s ε0-induction (though we have
not yet proved this).

We want to be able to use ACL2 to assist in HOL proof de-
velopments, as described in the companion paper [3]. The
main idea is to bridge the gap between HOL and ACL2
by way of SEXP, using a two-step process. The first step
is to take a “pure” HOL development (not in SEXP) and
create a parallel SEXP development. For example, an ap-
pend function on HOL lists would have a corresponding ap-
pend function on SEXP “lists”, i.e., null-terminated linear
trees built from the sexp cons function, representing ACL2’s
true-listp objects. The aforementioned companion paper
describes progress in this direction, using the HOL4 [8] im-
plementation of higher-order logic. We are optimistic that
conversion of HOL functions to SEXP functions will gener-
ally require only minimal user intervention. The second step
is to translate the resulting SEXP development into ACL2,
fully automatically. That step is conceptually straightfor-
ward once we understand the connection between SEXP and
ACL2, which is the topic of the present paper.

Section 2 defines the S-expression data type, sexp, in HOL.
Then in Section 3 we give some highlights of the defini-
tions of ACL2 primitives, with full details deferred to an
appendix. Section 4 discusses translation of ACL2 events
into SEXP. After discussing some issues in Section 5, we
make some concluding remarks in Section 6.

Interaction described in this paper is with the HOL4 sys-
tem. But our results should apply to any implementation of
classical higher-order logic.

2. S-EXPRESSIONS IN HOL
Communication with the HOL4 system is through Stan-

dard ML (SML), which provides a metalanguage for pro-
gramming infrastructure, issuing commands to make defini-
tions, and directing the proof process. Terms, types and the-
orems of higher order logic are distinct types term, hol type

and thm of SML. A typechecker ensures values of type thm

can only be created by applying inference rules to instances
of axioms or definitions. This is the main idea of ‘LCF-style’
theorem provers [2].



The following brief introduction to HOL syntax should be
adequate in support of reading this paper. All functions are
unary (“curried”), so for example if x y z is equivalent to
(((if x) y) z): (if x) is a function taking two arguments
that returns the first (y) if x is true and returns the second
(z) if x is false. The symbol ! is read “for all”; for example,
!x y. P x y is read as “forall all x and y, P x y”.

Package names and and symbol names will both be rep-
resented in HOL by strings (a predefined type in the logic).
The following two ML commands define packagename and
name to be abbreviations for the string type.

type_abbrev("packagename", ``:string``);

type_abbrev("name", ``:string``);

We may now adapt code from Mark Staples [9] to define
S-expressions in HOL. Note that although conceptually, the
symbol and pair constructors each take two arguments, it
is convenient technically to make each take one argument,
yielding a function that expects the other argument — so
called currying of higher-order logic.

Hol_datatype

`sexp = ACL2_SYMBOL of packagename => name

| ACL2_STRING of string

| ACL2_CHARACTER of char

| ACL2_NUMBER of complex_rational

| ACL2_PAIR of sexp => sexp`;

Evaluating this SML expression defines a new HOL type,
sexp, representing S-expressions. It is the disjoint union
of symbols (as pairs of strings), strings, characters, com-
plex rationals, and pairs of S-expressions (conses). The
complex rational type is defined in terms of pairs of ra-
tional numbers [1], and hence corresponds to the complex
rational numbers as included in ACL2. Fortunately, HOL
characters and strings correspond to those of ACL2. So the
only tricky part here is symbols.

Notice that the sexp constructor ACL2 SYMBOL defined above
creates a HOL term of type sexp whenever it is given a pack-
age name and a symbol name. However, some such objects
do not correspond to ACL2 symbols. For example, the value
of (ACL2 SYMBOL "ACL2" "NIL") does not correspond to an
ACL2 symbol, because the package name of ACL2’s NIL

symbol is "COMMON-LISP", not "ACL2":

ACL2 !>(symbol-package-name 'nil)

"COMMON-LISP"

ACL2 !>

We choose to treat such “bad symbols” as ACL2 bad atoms,
in the sense that the translation of symbolp to HOL will
fail on such atoms. We elaborate in the next section. For-
tunately, the ACL2 logic makes no requirement that every
object be a symbol, a string, a character, a number, or a
cons pair.

It is convenient to introduce short names for the sexp con-
structors. For example, the following allows us to write num

in place of ACL2 NUMBER. These overloading commands allow
cons and the others to behave like constructors, so they can
be used in patterns in definitions.

declare_names ("ACL2_PAIR", "cons");

declare_names ("ACL2_SYMBOL", "sym");

declare_names ("ACL2_NUMBER", "num");

declare_names ("ACL2_STRING", "str");

declare_names ("ACL2_CHARACTER", "chr");

The metalanguage function declare names is part of the
infrastructure that we have programmed in SML to support
our HOL-ACL2 link.

3. DEFINING ACL2 PRIMITIVES IN HOL
In this section we describe definitions of ACL2 primitive

functions in SEXP. Details are provided in the Appendix.
But let us start by defining ACL2 constants nil and t in

the HOL theory SEXP. First consider nil. This symbol is in
the "COMMON-LISP" package, so we define a constant named
COMMON-LISP::NIL in HOL. However, this name is cumber-
some; furthermore, “::”, “-”, and some other characters
are not handled by the HOL4 parser. Therefore, we also
provide a HOL-friendly name that is overloaded onto the
ACL2 name. Thus, the following definition overloads name
"COMMON-LISP::NIL" with the HOL-friendly name "nil",
defined to be a call of the sym constructor on package name
"COMMON-LISP" and name "NIL".

acl2Define "COMMON-LISP::NIL"

`nil = sym "COMMON-LISP" "NIL"`;

where the metalanguage function acl2Define is another part
of the infrastructure that we have programmed to support
our HOL-ACL2 link. It invokes HOL4’s built-in definitional
mechanism to define a new constant named COMMON-LISP::NIL

in the SEXP theory satisfying the equation:

COMMON-LISP::NIL = ACL2_SYMBOL "COMMON-LISP" "NIL"

and then uses declare names to create nil as the HOL-
friendly name for this constant.

The definition of t is similar.

acl2Define "COMMON-LISP::T"

`t = sym "COMMON-LISP" "T"`;

Let us turn now to the definition of ACL2 primitive func-
tions. The ACL2 source code defines a constant *primitive-
-formals-and-guards*, whose value is an association list
whose keys are the built-in ACL2 functions that do not have
explicit definitions in the logic:

(defconst *primitive-formals-and-guards*

'((acl2-numberp (x) 't)

(bad-atom<= (x y) (if (bad-atom x)

(bad-atom y)

'nil))

...))

For example, acl2-numberp has formal parameter list (x)

and a guard of t.1 We will be ignoring the guards, which
are logically irrelevant.

We need to provide a corresponding definition for each of
these primitives in SEXP. Let us start with the definition of
acl2-numberp. This symbol is in the "ACL2" package, so we
define the function named ACL2::ACL2-NUMBERP in HOL.

acl2Define "ACL2::ACL2-NUMBERP"

`(acl2_numberp(num x) = t) /\

(acl2_numberp _ = nil)`;

1The guard is given in internal (translated) form: in this
case, ’t rather than t.



This definition says: “define a new function, ACL2::ACL2-NUMBERP
(with alternate name acl2 numberp), returning t on any ob-
ject constructed by num, and returning nil on any other
object.”

A full list of such definitions may be found in the Ap-
pendix. Here, we explain few of the more interesting ones.

The following definition of ACL2’s addition function takes
into account the behavior of this function on non-numbers.

acl2Define "ACL2::BINARY-+"

`(add (num x) (num y) = num(x+y)) /\

(add (num x) _ = num x) /\

(add _ (num y) = num y) /\

(add _ _ = int 0)`;

Consider the following axiom, copied from ACL2 source file
axioms.lisp.

(defaxiom completion-of-+

(equal (+ x y)

(if (acl2-numberp x)

(if (acl2-numberp y)

(+ x y)

x)

(if (acl2-numberp y)

y

0)))

:rule-classes nil)

The care taken in the definition of add above allows us to
use HOL4 to prove a translation of this axiom to SEXP.

|- !x y.

equal

(add x y)

(ite

(acl2_numberp x)

(ite (acl2_numberp y) (add x y) x)

(ite (acl2_numberp y) y (int 0)))

= t

Our current automated translation actually produces the
following instead, also easily proved (see the Appendix for
the definition of cpx).

|- ~(equal

(add ACL2::X ACL2::Y)

(ite (acl2_numberp ACL2::X)

(ite (acl2_numberp ACL2::Y)

(add ACL2::X ACL2::Y)

ACL2::X)

(ite (acl2_numberp ACL2::Y)

ACL2::Y

(cpx 0 1 0 1)))

=

nil)

The following definition takes advantage of the fact that
we have already defined nil.

acl2Define "COMMON-LISP::IF"

`ite x (y:sexp) (z:sexp) =

if x = nil then z else y`;

(The type decorations “:sexp” stop the HOL typechecker
from making the constant COMMON-LISP::IF polymorphic;
such polymorphism is harmless, but isn’t useful here.)

Perhaps the trickiest part of the translation is the han-
dling of symbols and packages. We need to make sure that
SEXP faithfully represents ACL2’s notions of the package
name and symbol name of a symbol.

The ACL2 package system is represented in HOL with
a function BASIC INTERN, which takes a symbol name and
a package name and returns an S-expression. An ACL2
theory associates each package name with a list of imported
symbols. For example, consider the ACL2 form (defpkg

"FOO" ’(A B)), where A and B are in the "ACL2" package.
This defines an ACL2 package named "FOO" that imports
symbols A an B, represented in HOL as sym "ACL2" "A" and
sym "ACL2" "B".

Let us turn now to the definition of BASIC INTERN. If
pkg name is the name of a known package and symbol name

is the name of a symbol imported into that package from
some other package, named old pkg, then:

BASIC_INTERN symbol_name pkg_name =

(sym old_pkg symbol_name)

E.g., BASIC INTERN "A" "FOO" equals sym "ACL2" "A" un-
der the definition of package "FOO" given above. Otherwise,
if pkg name is the name of a known ACL2 package, then:

BASIC_INTERN symbol_name pkg_name =

(sym pkg_name symbol_name)

Finally, if pkg name is not the name of a known ACL2 pack-
age, we return an arbitrary value.

An ACL2 data structure, (known-package-alist state),
is represented via a HOL constant ACL2 PACKAGE ALIST. This
constant, which helps with the definition of BASIC INTERN,
contains a list of triples

(symbol-name , known-pkg-name , actual-pkg-name)

The idea is that when symbol-name is interned into known-

-pkg-name, the resulting symbol’s package name is actual-
-pkg-name. That is, the symbol with name symbol-name

and package-name actual-pkg-name is imported into pack-
age known-pkg-name.

A given ACL2 development will define ACL2 PACKAGE ALIST

for the collection of packages defined in that development.
Its value for the initial (ground-zero) ACL2 theory contains
over 2700 triples:

|- ACL2_PACKAGE_ALIST =
[("&ALLOW-OTHER-KEYS","ACL2","COMMON-LISP");
("*PRINT-MISER-WIDTH*","ACL2","COMMON-LISP");
("&AUX","ACL2","COMMON-LISP");
.
.
.] : thm

If we define

LOOKUP y [(x1,y1,z1);...;(xn,yn,zn)] x

to return zi if x=xi and y=yi, and to return y otherwise,
then BASIC INTERN is defined by:

BASIC_INTERN sym_name pkg_name =

sym sym_name (LOOKUP pkg_name

ACL2_PACKAGE_ALIST

sym_name)



We then define the notion of an ACL2 symbol as follows, test
whether an sexp constructed in HOL using the constructor
sym represents a valid symbol in the package structure de-
fined by ACL2 PACKAGE ALIST.

acl2Define "COMMON-LISP::SYMBOLP"

`(symbolp (sym p n) =

if (BASIC_INTERN n p = sym p n)

/\ ~(p = "")

then t else nil)

/\

(symbolp _ = nil)`;

4. TRANSLATING ACL2 DEFINITIONS
AND THEOREMS TO HOL

The preceding section explains how the ACL2 primitives
are defined directly in HOL’s SEXP theory. However, our
embedding also demands the ability to translate ACL2 def-
initions, axioms, and theorems into HOL.

The translation of ACL2 definitions relies on the transla-
tion of ACL2 expressions, which has already been illustrated
in the preceding section. Definitions, then, are handled in a
straightforward manner. (Note that the translation, which
is still evolving, converts ACL2 function names to lower case
while replacing “ “ with “-”, at least in most common cases.)
Consider the following ACL2 definition.

(defun d5 (x)

(if (consp x)

(d1 x)

(if (symbolp x)

(d4 'xyz)

(d2 x))))

The corresponding HOL definition results in the following
defining theorem (again, note that “!” is HOL’s “forall”
symbol).

|- !X.

d5 X =

ite (consp X)

(d1 X)

(ite (symbolp X)

(d4 (sym "ACL2" "XYZ"))

(d2 X))

The following example illustrates our careful handling of
quoted constants. It also illustrates our translation of prim-
itives, such as translation of binary-+ to the HOL function
add defined in the preceding section. The ACL2 definition

(defun foo (x y)

(cons (binary-+ y x)

'(a (b car) . c)))

generates a HOL definition that yields this defining theorem:

|- !X Y.

foo X Y =

cons (add Y X)

(cons (sym "ACL2" "A")

(cons

(cons (sym "ACL2" "B")

(cons (sym "COMMON-LISP" "CAR")

(sym "COMMON-LISP" "NIL")))

(sym "ACL2" "C")))

Theorems and axioms are translated using the same mech-
anism as definitions (since definitions in HOL are essentially
conjunctions of equations).

5. DISCUSSION AND FUTURE WORK
We have provided a connection between SEXP (a HOL

theory) and ACL2, in order to factor the gap between HOL
and ACL2. Part of the connection is a bridge between HOL
and SEXP, which is provided through formal proof within
HOL. The rest of the connection bridges a much smaller
semantic gap, namely between SEXP and ACL2, which how-
ever does not have such a convenient opportunity for for-
malization. Thus, we make this latter connection through
untrusted tools, for which testing is therefore critical. We
have performed some preliminary “round-trip” tests, con-
verting ACL2 code to SEXP and back again, that increase
our confidence in the correctness of our code.

But we would also like to be confident of the key logical
requirement: ACL2 axioms translate to theorems of SEXP.
Thus, we have translated to HOL all defaxiom events in
ACL2 source file axioms.lisp and have made significant
progress towards proving those translations in HOL4. We
fully expect that our definitions of the primitives and trans-
lations of functions defined in that file will make it straight-
forward (if tedious) to complete this exercise, which will in-
crease confidence in the correctness of our embedding. We
also intend to complete the task of showing that HOL is
powerful enough to prove the necessary instances of induc-
tion.

Although we have preliminary tools for connecting HOL4
and ACL2, we are still thinking about how to create a user-
friendly environment for working in both systems. For ex-
ample, we imagine that local events will not be imported,
but we have not yet implemented this idea. An essential part
of our plan is that theorems and recursive definitions may
be imported from ACL2 into HOL, but they will be given
an ACL2 tag, in support of the HOL philosophy that all the-
orems must be given formal proofs. Thus, tagged theorems
are treated as axioms from that perspective, but if we have
done our job right, we can believe that these ACL2-tagged
“axioms” are indeed theorems.

We intend to translate encapsulate events to SEXP as fol-
lows. Consider an encapsulate event that introduces func-
tions f1, . . ., fk that satisfy formula ϕ. HOL provides a
mechanism for introducing corresponding functions satisfy-
ing the translation ϕ′ of ϕ to SEXP, but with the obliga-
tion to prove that such functions exist satisfying ϕ′. This
proof obligation can be marked as a theorem with an ACL2
tag, since ϕ has been proved in ACL2 for appropriate func-
tions (locally defined within the encapsulate). Note that
the same idea can be used to translate recursive (and mu-
tually recursive) functions into SEXP, where ACL2-tagged
theorems can avoid the need to prove termination in HOL.

This work supports the use of ACL2 as an oracle for HOL,
because of the key property that ACL2 theorems are to be
translated to theorems of SEXP. But can this work support
the use of HOL as an oracle for ACL2? Investigation has be-
gun on supporting a general mechanism for hooking external
tools with ACL2, the main idea being that an external tool
should implement a first-order theory. John Matthews [7]
has observed that if the external tool supports a higher-order
logic, then we may be able to restrict to the set of first-order
consequences to get the requisite first-order theory.



6. CONCLUSION
We have shown how to connect HOL and ACL2 by defin-

ing a theory in HOL, SEXP, that is in some sense “isomor-
phic” to ACL2. More accurately, SEXP can be viewed as a
model of ACL2. Yet more accurately, our embedding cor-
responds to the classical notion of theory embedding: for
any theorem provable in ACL2, its translation to SEXP is
provable in HOL.

The companion paper [3] describes the application of this
connection to encode HOL developments into ACL2. The
encoding is factored into a translation from appropriate HOL
developments into SEXP, which requires proof, and a trans-
lation from SEXP to ACL2. The former may may employ
some automation in both the translation and the proof. The
latter is fully automatic, justified by the theory laid out in
the present paper.
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Appendix: Defining ACL2 primitives in HOL
The following ML file, slightly abbreviated here, is taken
from the public distribution hosted at SourceForge at http:
//cvs.sourceforge.net/viewcvs.py/*checkout*/hol/hol98/

examples/acl2/ml/sexpScript.sml.

val equal_def =

acl2Define "COMMON-LISP::EQUAL"

`equal (x:sexp) (y:sexp) = if x = y then t else nil`;

val stringp_def =

acl2Define "COMMON-LISP::STRINGP"

`(stringp(str x) = t) /\ (stringp _ = nil)`;

val characterp_def =

acl2Define "COMMON-LISP::CHARACTERP"

`(characterp(chr x) = t) /\ (characterp _ = nil)`;

(*****************************************************************************)

(* Construct a fraction then a rational from numerator and denominator *)

(*****************************************************************************)

val rat_def = Define `rat n d = abs_rat(abs_frac(n,d))`;

(*****************************************************************************)

(* Construct a complex from four integers: an/ad + (bn/bd)i. *)

(*****************************************************************************)

val cpx_def =

Define `cpx an ad bn bd = num(com (rat an ad) (rat bn bd))`;

(*****************************************************************************)

(* Construct a complex from an integer: n |--> n/1 + (0/1)i. *)

(*****************************************************************************)

val int_def = Define `int n = cpx n 1 0 1`;

(*****************************************************************************)

(* Construct a complex from a natural number: n |--> int n. *)

(*****************************************************************************)

val nat_def = Define `nat n = int(& n)`;

val acl2_numberp_def =

acl2Define "ACL2::ACL2-NUMBERP"

`(acl2_numberp(num x) = t) /\ (acl2_numberp _ = nil)`;

val add_def =

acl2Define "ACL2::BINARY-+"

`(add (num x) (num y) = num(x+y)) /\

(add (num x) _ = num x) /\

(add _ (num y) = num y) /\

(add _ _ = int 0)`;

val mult_def =

acl2Define "ACL2::BINARY-*"

`(mult (num x) (num y) = num(x*y)) /\

(mult _ _ = int 0)`;

val less_def =

acl2Define "COMMON-LISP::<"

`(less (num(com xr xi)) (num(com yr yi)) =

if xr < yr

then t

else (if xr = yr then (if xi < yi then t else nil) else nil))

/\

(less _ (num(com yr yi)) =

if rat_0 < yr

then t

else (if rat_0 = yr then (if rat_0 < yi then t else nil) else nil))

/\

(less (num(com xr xi)) _ =

if xr < rat_0

then t

else (if xr = rat_0 then (if xi < rat_0 then t else nil) else nil))

/\

(less _ _ = nil)`;

val unary_minus_def =

acl2Define "ACL2::UNARY--"

`(unary_minus(num x) = num(COMPLEX_SUB com_0 x)) /\

(unary_minus _ = int 0)`;

val reciprocal_def =

acl2Define "ACL2::UNARY-/"

`(reciprocal (num x) =

if x = com_0 then int 0 else num(COMPLEX_RECIPROCAL x))

/\

(reciprocal _ = int 0)`;

val consp_def =

acl2Define "COMMON-LISP::CONSP"

`(consp(cons x y) = t) /\ (consp _ = nil)`;

val car_def =

acl2Define "COMMON-LISP::CAR"

`(car(cons x _) = x) /\ (car _ = nil)`;

val cdr_def =

acl2Define "COMMON-LISP::CDR"

`(cdr(cons _ y) = y) /\ (cdr _ = nil)`;

val realpart_def =

acl2Define "COMMON-LISP::REALPART"

`(realpart(num(com a b)) = num(com a rat_0)) /\

(realpart _ = int 0)`;

val imagpart_def =

acl2Define "COMMON-LISP::IMAGPART"

`(imagpart(num(com a b)) = num(com b rat_0)) /\

(imagpart _ = int 0)`;

val rationalp_def =

acl2Define "COMMON-LISP::RATIONALP"

`(rationalp(num(com a b)) = if b = rat_0 then t else nil) /\

(rationalp _ = nil)`;

val complex_rationalp_def =

acl2Define "ACL2::COMPLEX-RATIONALP"

`(complex_rationalp(num(com a b)) = if b = rat_0 then nil else t)

/\

(complex_rationalp _ = nil)`;

val complex_def =

acl2Define "COMMON-LISP::COMPLEX"

`(complex (num(com xr xi)) (num(com yr yi)) =

num(com (if (xi = rat_0) then xr else rat_0)

(if (yi = rat_0) then yr else rat_0)))

/\

(complex (num(com xr xi)) _ =

num(com (if (xi = rat_0) then xr else rat_0) rat_0))

/\

(complex _ (num(com yr yi)) =

num(com rat_0 (if (yi = rat_0) then yr else rat_0)))

/\

(complex _ _ = int 0)`;

val integerp_def =

acl2Define "COMMON-LISP::INTEGERP"

`(integerp(num n) = if IS_INT n then t else nil) /\

(integerp _ = nil)`;

val numerator_def =

acl2Define "COMMON-LISP::NUMERATOR"

`(numerator(num(com a b)) =

if b = rat_0 then int(reduced_nmr a) else int 0)

/\

(numerator _ = int 0)`;

val denominator_def =

acl2Define "COMMON-LISP::DENOMINATOR"

`(denominator(num(com a b)) =

if b = rat_0 then int(reduced_dnm a) else int 1)

/\

(denominator _ = int 1)`;

val char_code_def =

acl2Define "COMMON-LISP::CHAR-CODE"

`(char_code(chr c) = int (&(ORD c))) /\

(char_code _ = int 0)`;

val code_char_def =

acl2Define "COMMON-LISP::CODE-CHAR"

`(code_char(num(com a b)) =

if IS_INT(com a b) /\ (0 <= reduced_nmr a) /\ (reduced_nmr a < 256)

then chr(CHR (Num(reduced_nmr a)))

else chr(CHR 0))



/\

(code_char _ = chr(CHR 0))`;

val ite_def =

acl2Define "COMMON-LISP::IF"

`ite x (y:sexp) (z:sexp) = if x = nil then z else y`;

(*****************************************************************************)

(* If f : 'a -> sexp then list_to_sexp f : num list : 'a list -> sexp. *)

(* *)

(* For example: *)

(* *)

(* |- list_to_sexp num [1; 2; 3] = *)

(* cons (num 1) (cons (num 2) (cons (num 3) (sym "COMMON-LISP" "NIL"))) *)

(*****************************************************************************)

val list_to_sexp_def =

Define

`(list_to_sexp f [] = nil) /\

(list_to_sexp f (x::l) = cons (f x) (list_to_sexp f l))`;

(*****************************************************************************)

(* coerce *)

(* *)

(* ; First, we need to translate this ACL2 definition: *)

(* *)

(* (defun make-character-list (x) *)

(* (cond ((atom x) nil) *)

(* ((characterp (car x)) *)

(* (cons (car x) (make-character-list (cdr x)))) *)

(* (t *)

(* (cons (code-char 0) (make-character-list (cdr x)))))) *)

(* *)

(* ; We also require HOL functions coerce_string_to_list and *)

(* ; coerce_list_to_string (not written here) that coerce a string (e.g., *)

(* ; "abc") to an SEXP list (e.g., cons 'a' (cons 'b' (cons 'c' nil))) *)

(* ; and vice-versa, respectively. *)

(* *)

(*****************************************************************************)

(*****************************************************************************)

(* (defun make-character-list (x) *)

(* (cond ((atom x) nil) *)

(* ((characterp (car x)) *)

(* (cons (car x) (make-character-list (cdr x)))) *)

(* (t *)

(* (cons (code-char 0) (make-character-list (cdr x)))))) *)

(*****************************************************************************)

val make_character_list_def =

Define

`(make_character_list(cons (chr c) y) =

(cons (chr c) (make_character_list y)))

/\

(make_character_list(cons x y) =

(cons (code_char(int 0)) (make_character_list y)))

/\

(make_character_list _ = nil)`;

(*****************************************************************************)

(* "abc" |--> (cons (chr #"a") (cons (chr #"b") (cons (chr #"c") nil))) *)

(* *)

(* list_to_sexp maps a function down a HOL list and then conses up an *)

(* s-expression from the resulting list. For example: *)

(* *)

(* list_to_sexp chr [a; b; c] = *)

(* cons (chr a) (cons (chr b) (cons (chr c) (sym "COMMON-LISP" "NIL"))) *)

(* *)

(* EXPLODE explodes a HOL string into a HOL list of characters. *)

(*****************************************************************************)

val coerce_string_to_list_def =

Define

`coerce_string_to_list s = list_to_sexp chr (EXPLODE s)`;

(*****************************************************************************)

(* (cons (chr #"a") (cons (chr #"b") (cons (chr #"c") nil))) |--> "abc" *)

(* *)

(* STRING : char->string->string is HOL's string-cons function. *)

(*****************************************************************************)

val coerce_list_to_string_def =

Define

`(coerce_list_to_string(cons (chr c) y) =

STRING c (coerce_list_to_string y))

/\

(coerce_list_to_string _ = "")`;

val coerce_def =

acl2Define "COMMON-LISP::COERCE"

`(coerce (str s) y =

if y = sym "COMMON-LISP" "LIST"

then coerce_string_to_list s

else str "")

/\

(coerce (cons a x) y =

if y = sym "COMMON-LISP" "LIST"

then nil

else str(coerce_list_to_string(make_character_list(cons a x))))

/\

(coerce _ y = if y = sym "COMMON-LISP" "LIST" then nil else str "")`;

(*****************************************************************************)

(* The following function represents an ACL2 package system, but is not *)

(* itself an ACL2 primitive; rather, it is used in the translation (see *)

(* for example intern-in-package-of-symbol). *)

(* *)

(* BASIC_INTERN : string -> string -> SEXP *)

(* *)

(* An ACL2 data structure is available to help with the definition of *)

(* BASIC_INTERN. For example, after evaluation of (defpkg "FOO" '(a *)

(* b)), the form (known-package-alist state) evaluates to the following *)

(* (which I have abbreviated, omitting irrelevant or not-useful info). *)

(* Note that each package is associated with a list of imported *)

(* symbols. For example, "FOO" imports two symbols, represented in HOL *)

(* as (sym "ACL2" "A") and (sym "ACL2" "B"). *)

(* *)

(* (("FOO" (A B) ...) *)

(* ("ACL2-USER" (& *ACL2-EXPORTS* ...)) *)

(* ("ACL2-PC" NIL ...) *)

(* ("ACL2-INPUT-CHANNEL" NIL NIL NIL) *)

(* ("ACL2-OUTPUT-CHANNEL" NIL NIL NIL) *)

(* ("ACL2" (&ALLOW-OTHER-KEYS *PRINT-MISER-WIDTH* ...) NIL NIL) *)

(* ("COMMON-LISP" NIL NIL NIL) *)

(* ("KEYWORD" NIL NIL NIL)) *)

(* *)

(* Let us turn now to the definition of BASIC_INTERN. *)

(* *)

(* If pkg_name is the name of a known package and symbol_name is the *)

(* name of a symbol imported into that package from some other package, *)

(* named old_pkg, then: *)

(* *)

(* BASIC_INTERN symbol_name pkg_name = (sym old_pkg symbol_name) *)

(* *)

(* For example, given the package system shown above, *)

(* BASIC_INTERN "A" "FOO" = (sym "ACL2" "A"). *)

(* *)

(* Otherwise, if pkg_name is the name of a known package (from the ACL2 *)

(* data structure as shown above), then: *)

(* *)

(* BASIC_INTERN symbol_name pkg_name = (sym pkg_name symbol_name) *)

(* *)

(* Finally, if pkg_name is not the name of a known package, we return *)

(* an arbitrary value. *)

(*****************************************************************************)

(*****************************************************************************)

(* ACL2_PACKAGE_ALIST contains a list of triples *)

(* *)

(* (symbol-name , known-pkg-name , actual-pkg-name) *)

(* *)

(* The idea is that when symbol-name is interned into known-pkg-name, the *)

(* resulting symbol's package name is actual-pkg-name. That is, the *)

(* symbol with name symbol-name and package-name actual-pkg-name is *)

(* imported into package known-pkg-name. *)

(*****************************************************************************)

(*****************************************************************************)

(* - LOOKUP y [(x1,y1,z1);...;(xn,yn,zn)] x = zi if x=xi and y=yi *)

(* (scan from left) *)

(* - LOOKUP y [(x1,y1,z1);...;(xn,yn,zn)] x = y if (x=/=xi or y=/=yi) *)

(* for any i *)

(*****************************************************************************)

val LOOKUP_def =

Define

`(LOOKUP y [] _ = y)

/\

(LOOKUP y ((x1,y1,z1)::a) x =

if (x=x1) /\ (y=y1) then z1 else LOOKUP y a x)`;

val BASIC_INTERN_def =

Define

`BASIC_INTERN sym_name pkg_name =

sym (LOOKUP pkg_name ACL2_PACKAGE_ALIST sym_name) sym_name`;

val symbolp_def =

acl2Define "COMMON-LISP::SYMBOLP"

`(symbolp (sym p n) =

if (BASIC_INTERN n p = sym p n) /\ ~(p = "") then t else nil)

/\

(symbolp _ = nil)`;

(*****************************************************************************)

(* bad-atom<= *)

(* *)

(* ; For us, bad atoms are objects that look like symbols but whose *)

(* ; combination of package name and symbol name are impossible for the *)

(* ; given package system. *)

(* *)

(*****************************************************************************)

(*****************************************************************************)

(* Pick a well-founded relation on s-expressions *)

(*****************************************************************************)

val SEXP_WF_LESS_def =

Define `SEXP_WF_LESS = @R:sexp->sexp->bool. WF R`;

(*****************************************************************************)

(* ACL2_BAD_ATOM_LESS x y iff x is less then y in the well-founded relation *)

(*****************************************************************************)

val bad_atom_less_def =

acl2Define "ACL2::BAD-ATOM<="

`bad_atom_less x y = if SEXP_WF_LESS x y then t else nil`;

val symbol_name_def =

acl2Define "COMMON-LISP::SYMBOL-NAME"

`(symbol_name (sym p n) = ite (symbolp (sym p n)) (str n) (str ""))

/\

(symbol_name _ = (str ""))`;

val symbol_package_name_def =

acl2Define "ACL2::SYMBOL-PACKAGE-NAME"

`(symbol_package_name (sym p n) =

ite (symbolp (sym p n)) (str p) (str ""))

/\

(symbol_package_name _ = (str ""))`;

(*****************************************************************************)

(* pkg-witness *)

(* *)

(* Note that ACL2 refuses to parse (pkg-witness pkg) unless pkg is an *)

(* explicit string naming a package already known to ACL2. *)

(*****************************************************************************)

val pkg_witness_def =



acl2Define "ACL2::PKG-WITNESS"

`pkg_witness (str x) =

let s = BASIC_INTERN "PKG-WITNESS" x in ite (symbolp s) s nil`;

val intern_in_package_of_symbol_def =

acl2Define "ACL2::INTERN-IN-PACKAGE-OF-SYMBOL"

`(intern_in_package_of_symbol (str x) (sym p n) =

ite (symbolp (sym p n)) (BASIC_INTERN x p) nil)

/\

(intern_in_package_of_symbol _ _ = nil)`;
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