
Implementing a Cost-Aware Evaluator for ACL2
Expressions

Ruben Gamboa
Department of Computer Science

University of Wyoming
Laramie, WY 82071

ruben@cs.uwyo.edu

John Cowles
Department of Computer Science

University of Wyoming
Laramie, WY 82071

cowles@cs.uwyo.edu

ABSTRACT
One of ACL2’s most interesting features is that it is exe-
cutable, so users can run the programs that they verify, and
debug them during verification. In fact, the ACL2 imple-
mentors have gone well out of their way to make sure ACL2
programs can be executed efficiently. Nevertheless, ACL2
does not provide a framework for reasoning about the cost
of function invocations. This paper describes how such a
framework can be added to ACL2, by using ACL2 macros
and supporting code to access the prover state. The ap-
proach is illustrated with a cost analysis of red-black tree
operations.

Categories and Subject Descriptors
C.4 [Computer Systems Organization]: Performance of
Systems

General Terms
Evaluators, function cost

Keywords
ACL2 evaluator

1. INTRODUCTION
ACL2 can be thought of as both a theorem prover and a

programming language. This is useful for a number of rea-
sons. Since (most) ACL2 terms can be evaluated directly, it
is possible to check manually whether a particular instance
of a theorem holds, before trying to prove that the theorem
is actually true. In addition, ACL2 can be used directly
as a programming language, e.g., to build hardware simula-
tors [11], leaving open the door to a later verification effort.

As a result, the ACL2 developers have spent a great deal
of effort making sure that programs written in ACL2 are effi-
cient. For example, they have added many features to ACL2

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ACL2 ’06 Seattle, Washington USA
Copyright 2006 ACL2 Steering Committee 0-9788493-0-2/06/08.

designed strictly to improve the efficiency of executable the-
ories, such as

• guards, which justify the direct execution of functions
by the underlying “raw” Lisp implementation,

• stobjs, which provide O(1) destructive access to data
structures while maintaining an applicative semantics
for formal reasoning, and

• mbe, which allows users to provide a different (more
efficient) definition of a function than the one used for
logical reasoning.

And many researchers have dealt explicitly with this aspect
of ACL2. For example, Ruiz Reina and others’ recent for-
malization of a quadratic unification algorithm is significant
in large part precisely because the algorithm in question is
quadratic [10]. Similarly, Moore demonstrated the correct-
ness of an O(n) time graph pathfidning algorithm [8]. Wild-
ing later showed that the algorithm, while O(n) in essence,
was closer to O(n2) in practice because an ACL2 implemen-
tation of the graph data structure had expensive primitive
operations. This was sufficient motivation for the develop-
ment of ACL2 stobjs and mbe. Using these features, Wild-
ing and Greve showed that the ACL2 implmentation did
indeed result in an O(n) pathfinding algorithm [12, 5].

It is significant that none of the results above dealt with
the efficiency of the programs in a formal way. It is likely
that this is due to the lack of a framework for reasoning
about function cost in ACL2. In particular, when a func-
tion is defined in ACL2, the current ACL2 theory is extended
with axioms that describe the behavior of the function (as
well as axioms justifying induction and other derived infer-
ence rules—see [6, 4] for details. However, no axioms regard-
ing the cost of executing the new functions are introduced.

This stands in contrast with Nqthm, also known as the
Boyer-Moore Theorem Prover, where each new function def-
inition implicitly enhanced the (partial) definition of the
global function v&c$, which could then be used to reason
about the cost of evaluating an Nqthm expression contain-
ing the new function symbol (and possibly other, previously
defined symbols as well.) In addition, v&c$ served as an
evaluator which could be used to reason about the value of
such expressions.

Nqthm’s v&c$ turns out to be far more powerful than a
simple evaluator, even a cost-aware evaluator, for terms in
the Nqthm logic. For example, readers who learned ACL2
with no prior knowledge of Nqthm will be surprised that the



following definition (named after Betrand Russell) in Nqthm
is valid [2]:

(RUS) = (CAR (V&C$ T ’(ADD1 (RUS)) NIL)

Read informally, this definition suggests that the value of
RUS is one more than the value the universal evaluator as-
signs to the function RUS. This apparent inconsistency is re-
solved in Nqthm by axiomatizing the evaluator such that it
returns either false, or a pair containing the value and cost of
the evaluation. Intuitively, v&c$ returns the value and cost
of well-defined expressions, but false for expressions whose
evaluation cost is infinite, such as RUS above.
v&c$ is even more powerful than the example above sug-

gests. Boyer and Moore show how v&c$ and its cousin eval$

can be used to define “quantifier” functions, similar to Lisp’s
mapcar [1]. Kunen took this a step further, showing how
v&c$ and eval$ can be used to build a nonconstructive ex-
tension to primitive recursive arithmetic (PRA,) in which it
is possible to prove the consistency of PRA [7].

We suspect that the surprising power of v&c$ is respon-
sible, at least in part, for the ACL2 designers’ decision to
leave it out of ACL2. Evaluators do fill an important need
in ACL2 (as in Nqthm,) because they can be used to jus-
tify :meta inference rules. To fill this need, ACL2 provides
defevaluator, which builds a custom evaluator for a spe-
cific ACL2 subtheory. The evaluator is added to the ACL2
theory using the regular theory extension mechanisms. In
fact, defevaluator is a clever macro that creates ACL2
encapsulate, defun, and defthm events needed to introduce
the evaluator. This has two practical consequences. First,
defevaluator avoids the possibility of introducing unsound-
ness into an ACL2 theory. From the perspective of sound-
ness, it can be seen as nothing more than syntactic sugar for
a particular theory extension. Second, defevaluator, un-
like Nqthm’s v&c$ can not make the theorem prover logically
more powerful.

In this paper we present defeval$, a framework imple-
mented in the same way as defevaluator—i.e., as an ACL2
macro with some supporting code—which produces axioms
similar to v&c$’s for reasoning about the cost, as well as
value, of expressions in ACL2.

2. THE GENERATED THEORY
In this section, we present the basic definitions and the-

orems that make up a theory constructed with defeval$.
Like v&c$, given an expression and an alist, defeval$ re-
turns either nil (when the expression contains terms that
the evaluator does not know how to evaluate) or a pair con-
sisting of the value of the expression and the cost of com-
puting it. The next section will show how this theory can
be constructed automatically in ACL2.

First of all, recall that defeval$ can be used to create an
evaluator for a specific theory. This can be done with the
following event:

(defeval$ evl reverse)

This event introduces the function evl, which is an evaluator
for ACL2 expressions involving reverse. The arguments to
evl include the term to be evaluated and an alist mapping
variables to concrete ACL2 terms. For example, after the
introduction of this event, the following will be theorems of
ACL2:

(equal (car (evl ’(reverse x) ’((x . (1 2 3)))))

’(3 2 1))

(equal (cadr (evl ’(reverse x) ’((x . (1 2 3)))))

24)

Note: These theorems are similar to the ones supported by
Nqthm’s v&c$.

Why should we believe that (car (evl ...)) returns the
value of the expression and that (cadr (evl ...)) returns
its cost? This is where the virtue of using an evaluator to
compute cost becomes apparent: It is possible to charac-
terize the behavior of the evaluator in ways that make its
output immediately obvious. For example, the defeval$

introducing evl will also introduce the following theorems:

(defthm evl-constraint-1

; The cost of evaluating a symbol is 0, and its

; value is either itself (for constants) or the

; lookup in the alist.

(implies (symbolp term)

(equal (evl term alist)

(if (or (booleanp term)

(acl2-numberp term))

(list term 0)

(list (cdr (assoc-eq term

alist))

0))))

(defthm evl-constraint-2

; The cost of evaluating a quoted term is 0, and

; the value is the quoted term.

(implies (equal (car term) ’quote)

(equal (evl term alist)

(list (nth 1 term) 0))))

(defthm evl-constraint-3-reverse

; The cost of evaluating (reverse x) is 1, plus

; the cost of evaluating x, plus the cost of

; evaluating the body of reverse. The value is

; the reverse of the value of x.

(implies (and (evl-valid-expr term)

(equal (car term) ’reverse))

(equal (evl term alist)

(list (reverse (car (evl (nth 1 term)

alist)))

(+ 1

(cadr (evl (nth 1 term) alist))

(cadr (evl ’(if (stringp x)

(coerce

(revappend

(coerce x ’list)

nil)

’string)

(revappend x nil))

‘((x . ,(car

(evl

(nth 1 term)

alist))))

)))))))

The function evl-valid-expr checks to make sure that term
contains only function symbols that are known to evl.

These theorems make it clear that the car of evl really is
the expected value of the expression, and that the cadr of
evl really is computing the cost of executing the function,



where the cost is measured by counting function openings.
Note: The generated theory includes many theorems anal-
ogous to evl-constraint-3-reverse, one for each function
used directly or indirectly in the execution of reverse, e.g.,
if, stringp, coerce, revappend, etc.

The theorem evl-constraint-3-reverse provides a hint
to the definition of evl. In particular, it should look some-
thing like this, where ...body... denotes the body of the
definition of reverse:

(defun evl (term alist)

(if (atom term)

...

(if (equal (car term) ’reverse)

(let ((arg1 (evl (nth 1 term) alist))

(body (evl ...body...

‘((x . ,(car arg1))))))

(list (car body)

(+ 1

(cadr arg1)

(cadr body))))

...)))

The problem, however, is that evl as defined above is not
obviously terminating. Consider: There are two recursive
invocations of evl, one to evaluate the argument to reverse,
and the other to evaluate the body (which is indicated by
...body... above.) The first call obviously operates on a
“smaller” argument, so that would lead to termination. The
second call, however, does not. The body of reverse looks
“bigger” than the term involving reverse, and the alist

is of little help—e.g., it may not change at all in the recur-
sive call. Aside: ACL2’s defevaluator macro sidesteps this
issue by not considering the body of the functions defined.
This works in that context, because the evaluator is only
concerned with the value of expressions, not their computa-
tional cost.

Of course, there really is a measure that is reduced by
each invocation, namely the canonical measure as defined
in [6]. This measure essentially counts the number of steps
required to complete the execution of the current term. The
proof obligations that ACL2 examines when new functions
are introduced justify the fact that this measure is indeed
decreased by the act of opening up a function call. However,
we found no easy way to use this measure directly to define
functions such as evl.

Instead, we proceed by defining a resource-bounded eval-
uator (evl-step term alist n) that evaluates the expres-
sion term up to at most n steps. This function obviously
terminates, since n is decreased in each recursive call. Next,
defeval$ defines a function (evl-reverse-n term alist)

that returns an estimate (usually larger than necessary) of
the value of n required for evl-step to completely evaluate
term under alist. Finally, these two functions are combined
to define evl.

3. GENERATING THE THEORY
In the previous section we saw the theory that is developed

by defeval$ to reason about the cost of evaluating a given
set of functions. In the following sections we consider how
this theory can be generated automatically. First we discuss
how we can find all the functions that are used directly or
indirectly by the functions we are interested in evaluating;

this is done in section 3.1. In section 3.2 we develop the the-
ory of the bounded evaluator, including the definition and
the key theorems that are required. Section 3.3 describes
how we find upper bounds for the limit argument used by
the bounded evaluator to process a given term. Then in
section 3.4 we turn our attention to the final evaluator. The
macro defeval$ wraps all this together, and it is described
in section 3.5.

3.1 The Supporting Theory
defeval$ allows the user to specify one or more functions

in which the user is interested. For example, to reason about
the cost of evaluating expressions in terms of length and
member, a user may issue the following event:

(defeval$ evl length member)

This is similar to the way an evaluator is defined using
ACL2’s built-in defevaluator function, but there are some
key differences. Consider the equivalent definition using
defevaluator:

(defevaluator evl evl-list

((length x) (member x y)))

First of all, defevaluator requires the user to name two
functions: evl which works on terms and evl-list which
evaluates lists of terms. Second, defevaluator requires that
the user specify the arity of the functions to be evaluated,
as shown above.

The third difference is more important (and serves to ex-
plain the previous two differences.) defevaluator is con-
cerned only with the value of expressions, so it can use the
original functions directly. defeval$, on the other hand,
is also concerned with the cost of function execution, so it
needs to know the bodies of the functions. Since it is un-
feasible to ask the user to provide the bodies, as well as the
arities of the desired functions, defeval$ has no choice but
to access the definitions from the ACL2 state. Given that,
defeval$ can gather all the other necessary information at
the same time.

ACL2 stores the required information as properties of the
function symbol. You can view all the properties for a sym-
bol with the command getprops as follows:

(getprops ’reverse ’current-acl2-world (w state))

This will list all the information that ACL2 stores about the
symbol reverse, including its definition, lemmas, etc. We
are particularly interested in the following properties:

• formals: A list containing the function’s formal argu-
ments, e.g., (X) for reverse.

• body: The body of the definition of the function, after
expanding macros and applying some minor normal-
izations (such as propagating if expressions upwards.)
This property is nil for built-in functions. Note: The
definition body may have free variables, but only if
they are listed in the list of formals.

• recursivep: Non-nil if the function is recursive. More
precisely, it is a list containing the clique of functions
making up a (possibly mutually) recursive definition.

• induction-machine: For recursive calls, this holds a
list of tests and the associated recursive calls that are



made when each test succeeds. This is created when
the function definition is accepted (according to some
well-founded measure,) and it used internally by ACL2
to build induction schemes.

• absolute-event-number: A (sort of) timestamp that
marks where the definition was added to the ACL2 his-
tory.

Individual properties can be retrieved using the function
getprop.

The property body is the key to finding the functions
used directly or indirectly by each function the user wishes
to evaluate. This can be done with a pair of recursive
functions—one for terms, the other for list of terms—that
traverse down the body of the original functions, finding new
functions to consider. The termination of these functions is
trivial, in that one eventually runs out of function symbols
to consider. Nevertheless, this argument would be hard to
carry out in ACL2, so we declare these functions in program
mode.

It will be important later that functions be considered in
inclusion order. That is, if function fn1 is used (directly or
indirectly) in the definition of function fn2 (and the func-
tions are not mutually recursive,) then fn1 should be con-
sidered before fn2. To ensure this we collect the functions
in the order in which they were originally defined, using the
property absolute-event-number to make the comparisons.

3.2 The Bounded Evaluator
Once all functions have been identified, it is possible to

construct the bounded evaluator (evl-step term alist n)

which returns either a list containing the value and cost of
term under alist, or the value nil when the evaluation of
term requires more than n steps. The definition contains
boilerplate to deal with the zp bound, atomic terms, quoted
terms, and if-terms. The remaining entries in the evaluator
are taken from the list of functions as follows:

• Terms corresponding to built-in functions are evalu-
ated by evaluating the arguments, then (if their eval-
uation succeeds) calling the built-in directly. The cost
is measured as 1 (for the function opening,) plus the
cost of evaluating the arguments.

• Terms corresponding to non-built-in functions are eval-
uated by evaluating the arguments, then (if their eval-
uation succeeds) evaluating the body while binding the
formal arguments to the result of evaluating the argu-
ments of the term. The cost is measured as 1, plus
the cost of evaluating the arguments, plus the cost of
evaluating the body.

The remaining generated events prove that evl-step has
the right properties, namely that when it returns a non-nil
value—an event we refer to as “succeeding” in the sequel—it
returns the correct value and execution cost of the expres-
sion, as suggested by the theorems listed in section 2. The
development of this theory is a non-trivial exercise.

An important first step is to show that evl-step is mono-
tonic. That is, when (evl-step term alist n) succeeds,
so will (evl-step term alist m) for all values of m larger
than n. Moreover, the value and cost returned by these two
invocations of evl-step are identical.

The problem with this lemma is that it is hard to apply
automatically. Consider a term (evl-step term alist m)

that we wish to show is not nil. According to the mono-
tonicity lemma, all we need is a value of n, smaller than
m, such that (evl-step term alist n) but it is not always
obvious which value of n to try.

Instead, we discovered that terms of the form

(evl-step term alist (+ -3 n))

(evl-step term alist (+ -1 n))

and so on were ubiquitous in subsequent proofs. What we
really needed are lemmas that show that when (+ -3 n)

is known to be sufficient, so is (+ -1 n). The trick is to
find the constant values in these lemmas automatically. For
reasons that will become obvious, we only have to consider
values from 0 to −k, where k is the maximum depth of
any given function body, where “depth” is defined using the
typical measure on trees. Once the value of k is found, it
is straightfoward to generate all the (roughly) k2/2 lemmas
involved.

Next we consider lemmas analogous to evl-constraint-*,
as defined in section 2. Constraints 1 and 2, dealing with
atomic and quoted terms, are completely straightforward.
So is constraint 3 for if-terms. These cases share a common
thread: They are generated with boilerplate in the defini-
tion of eval-step, so they can be dispensed with trivially,
regardless of the functions being evaluated.

The remaining function symbols can be classified into
three categories: built-ins, non-recursive, and recursive. The
built-ins are also trivial to deal with, since the constraint 3
associated with each built-in is identical to its definition in
evl-step. Non-recursive functions take only a little more
effort. Suppose f is a non-recursive function with body (g

...). According to the definition of evl-step, the values
(not costs) returned by the following terms are identical:

(evl-step ’(f x1 ... xk) alist n)

(evl-step ’(g ...)

’((x1 . V1) ... (xk . Vk))

(+ -1 n))

Here we assume that Vi is the value of xi under alist. Now,
if we know that evl-step works correctly for terms based
on g, we can conclude that the last term returns the value of
(g ...), which is precisely equal to f, by hypothesis. ACL2
can verify all this automatically, as long as it can take the
key step rewriting (evl-step ’(g ...) ...) to (g ...).
This key step, of course, is constraint 3 for the function g.
Here is where we require that the function symbols identi-
fied in section 3.1 be ordered according to introduction via
definition. By ordering the functions appropriately, we can
be sure that the lemmas showing that evl-step works cor-
rectly for g-terms is proved before the theorem for f-terms,
where it is needed.

That leaves recursive functions, where the story is un-
derstandably more complicated. We illustrate the approach
with a running example. Suppose that f is a recursively-
defined function, and consider an arbitrary term (f ...).
As part of evaluating this term, we will be forced to eval-
uate a term such as (f (cdr x) ...), where cdr is some
“destructor” function, and all the variables in this term are
formals of f. It is not easy to see why this latter term should
evaluate correctly. Clearly what is needed is some sort of in-
ductive argument, and it turns out that an induction based
on the definition of f fits the bill.

First a key lemma is required. Suppose we are considering
the following term:



(evl-step ’(f arg1 ... argk) alist n)

If this term is not nil, then the following term is also not
nil:

(evl-step ’(f x1 ... xk)

’((x1 . V1) ... (xk . Vk))

n)

As before, we assume here that Vi is the value of argi under
alist, and that the xi are the formal parameters to f.

This step means that we need only consider terms of this
last form, for all possible values of Vi. These terms can be
described succintly with the backquote notation as follows:

(evl-step ’(f x1 ... xk)

‘((x1 . ,x1) ... (xk . ,xk))

n)

Here, xi is a constant value naming a variable, and ,xi is
the free variable denoting any possible value.

Now, suppose the induction scheme suggested by f re-
places x1 with (cdr x1) as suggested above. Then the in-
duction hypothesis states that the following term is evalu-
ated properly by evl-step:

(evl-step ’(f x1 ... xk)

‘((x1 . ,(cdr x1)) ... (xk . ,xk))

n)

This is, of course, not the term that appears naturally in
the proof. In particular, when evl-step is opened, it will
inevitably lead to the following subterm:

(evl-step ’(f (cdr x1) ... xk)

‘((x1 . ,x1) ... (xk . ,xk))

n)

What is needed is a lemma showing that these last two invo-
cations of evl-step are equivalent. Then all the pieces are
in place for an inductive proof of the correctness of evl-step
for terms involving f—using the same induction scheme as
suggested by f.

What is required is a mechanism to generate these lemmas
in sequence. The property induction-machine of symbol f
has just the needed information. The value of this property
is a list of terms containing tests and recursive calls in the
context of these so-called ruling tests. For example, consider
the (normalized) body of binary-append:

(if (consp x)

(cons (car x)

(binary-append (cdr x) y))

y)

The induction machine for this function contains the follow-
ing1:

• Test: (endp x)

– Call: none

• Test: (not (endp x))

1The reader may notice that the tests and calls in the in-
duction machine are based on the unnormalized body of
binary-append. That explains why the induction machine
mentions endp while the normalized body mentions consp
instead.

– Call: (binary-append (cdr x) y)

In general there may be more than one recursive call for each
group of governing tests. For example, consider the function
fringe-aux defined as follows:

(defun fringe-aux (tree fringe)

(if (consp tree)

(fringe-aux (car tree)

(fringe-aux (cdr tree) fringe))

(cons tree fringe)))

Its induction machine is given by the following:

• Test: (consp tree)

– Call:

(fringe-aux (car tree)

(fringe-aux (cdr tree)

fringe))}

– Call: (fringe-aux (cdr tree) fringe)

• Test: (not (consp tree))

– Call: none

We always generate a lemma for each recursive call, regard-
less of how many calls exist for a given set of governing tests.
In fact, since one of the recursive calls may appear inside an-
other recursive call as in the fringe-aux example, we take
care to generate the lemmas in the proper order (which hap-
pens to be the order opposite to the one in which the calls
appear in induction-machine.)

Once these lemmas are established, only minor plumbing
is required to use them in an induction, as suggested by f,
to show that evl-step correctly evaluates f-terms.

3.3 A Sufficient Bound
Once evl-step is defined, it becomes necessary to find

a value of n for each term and alist such that (evl-step

term alist n) is not nil. Atomic and quoted terms are
handled trivially, since any positive (integer) value of n is
sufficient to evaluate them. For terms involving built-ins,
this is fairly straightforward: It is only necessary to find
an n 1 larger than is necessary to evaluate the arguments.
A similar argument takes care of if-terms, as it is only
necessary to evaluate the condition and one of the then/else
subterms.

For the remaining function symbols f, we define a func-
tion evl-f-n with the same arity as f, such that the term
(evl-step ’(f t1 ... tk) alist n) is not nil whenever

• n is a positive integer,

• n is large enough that each of the ti can be evaluated
under alist in n−1 steps, and

• n is at least equal to (evl-f-n V1 ... Vk) where
each Vi is the result of evaluating ti under alist.

In the remainder of this section we show how we can con-
struct such a function, and how we can automatically gen-
erate the proof that this function works as described.

The idea is to build this function by looking carefully at
the body of f. Let term be a term in ACL2 (e.g., the body
of f.) Then the value C(term) defined as follows is large
enough such that evl-step will be able to evaluate term if
given at least C(term) steps:



• If term is an atom or of the form (quote u), then
C(term) = 1

• If term is (if cond then else ), then C(term) is

(if cond
(+ 1 (max C(cond) C(then)))

(+ 1 (max C(cond) C(else))))

• If term is (f t1...tk) where f is a built-in function,
C(term) is (+ 1 (max C(t1)...C(tk)))

• Otherwise term is (f t1...tk) for some previously
(or recursively) defined function f. Then C(term) is (+
1 (max C(t1)...C(tk) (evl-f-n V1...Vk))) where
Vi is the value of ti under the given alist.

The function evl-f-n can be defined as C(body) + 1, where
body is the body of f. The extra 1 is necessary to open up
the definition of f.

The proof that evl-f-n works as claimed follows from
the same induction scheme suggested by f. The key lemma
is the following: If n is large enough that (evl-step ti

alist (- n 1)) succeeds for all ti, and n is large enough
that (evl-step body ’((t1 . ,V1)...((tk . ,Vk))) (- n

1)) also succeeds, then evl-step ’(f t1...tk) alist n)

must succeed.
A few hints are required to get this theorem through

ACL2. In particular, it is necessary to ask ACL2 to :expand

the evl-step terms that appear in the recursive subgoals.
Our approach to generate these hints is to build a lemma
for each recursive call in the induction machine of f. Then,
when induction is invoked, all the subgoals generated by
induction can be proved automatically. This technique was
common in Nqthm, since it was impossible in Nqthm to pro-
vide a hint for any subgoal except the topmost goal. An al-
ternative that we have not explored is to use computed hints
for this purpose, although we imagine they would work as
well.

Implementation Note: When f is recursive, evl-f-n will
also be recursive. In fact, both functions should have the
same induction machine. When ACL2 builds the induction
machine, it finds governing terms (i.e., the tests that deter-
mine when a recursive call is invoked) by traversing only the
topmost layer of if-terms. Therefore, we are careful in the
definition of C(term) to follow the exact same if-structure
as in the original function. What this means is that we
have to move any nested if terms up through the max and
+ functions above.

3.4 The Final Evaluator
We are now almost ready to construct the final evaluator.

First of all, the individual functions evl-f-n can be collected
into a single function evl-n that can process an entire term
at once, regardless of its top-most symbol. Since this process
requires that we find the Vi that corresponds to a particu-
lar ti, e.g., to find the arguments of a particular evl-f-n,
we need to be able to evaluate subterms. Therefore, we
construct a total evaluator (evl-aux term alist) that is
identical to the one produced by ACL2’s defevaluator.
It is easy to prove—i.e., no hints are required—that when
evl-step succeeds, the value it returns is the same com-
puted by evl-aux.

We would then like to prove the following theorem:

(defthm proposed-evl-n-is-enough

(implies (and (integerp n)

(<= (evl-n term alist) n))

(evl-step term alist n)))

However, this proposed theorem is false. The reason is that
there are two ways for evl-term to return nil. One is that
the value of n is too small to finish the computation of
term. This should not happen here, given the construction
of evl-n. But the other way is that term includes a func-
tion symbol that evl-n does not recognize. To get around
this problem, we define the function evl-valid-expr, which
checks whether term is defined solely in terms of recognized
functions. The correct theorem is as follows:

(defthm proposed-evl-n-is-enough

(implies (and (evl-valid-expr term)

(integerp n)

(<= (evl-n term alist) n))

(evl-step term alist n)))

The proof of this theorem requires a hint to force n to de-
crease correctly on the inductive calls—ACL2 users will be
familiar with this phenomenon. The function that suggests
this hint is also generated automatically, following the same
recursive pattern as evl-n.

We can now define the desired evaluator:

(defun evl (term alist)

(evl-step term alist (evl-n term alist)))

It follows from the properties of evl-step that, as long as
term is valid, evl always succeeds.

Moreover, the correctness properties previously proved
about evl-step transfer easily to evl. It is only necessary
to provide a hint to ACL2 to :use the appropriate instances,
rewriting evl applied to the arguments and body of a func-
tion into the equivalent evl-step terms.

3.5 Putting it Together
All the events described above are generated by the macro

defeval$-form with the following signature:

(defeval$-form evfn fns world-name world-alist)

The argument evfn denotes the desired name for the new
evaluator, and fns is a list of functions symbols that evfn

should be able to process. The remaining two arguments
are used to access the current ACL2 world, which needs to
be inspected by defeval$-form (for example, to find the
definitions of the functions in fns.) Ordinarily, world-name
should be ’current-acl2-world and world-alist should
be (w state). What defeval$-form returns is an event
that, when executed, will define constrained and executable
versions of the function evl. We automatically execute the
generated event by sending it to ACL2’s ld command. This
is done automatically by the macro defeval$:

(defmacro defeval$ (evfn &rest fns)

(list ’ld

(list ’list

(list ’defeval$-form

(list ’quote evfn)

(list ’quote fns)

(list ’quote

’current-acl2-world)

(list ’w ’state)))))



This allows the user to isssue a simple command, such as
the following:

(defeval$ evl reverse)

The macro deveval$ will generate the necessary events and
submit them to ACL2 for verification.

4. AN EXTENDED EXAMPLE
In this section we illustrate the use of defeval$ by pre-

senting a formal, albeit brief, analysis of the correctness
and completeness of the insert and lookup operations on
red-black trees. In section 4.1 we present a brief overview
of red-black trees and their formalization in ACL2. The
correctness of this formalization is addressed in section 4.2.
We address the time complexity of red-black trees in sec-
tion 4.3. Finally, in section 4.4 we assess how well defeval$
performed in this case study.

4.1 Red-Black Trees
Red-black trees are binary search trees with the following

additional restrictions [3]:

• Each node in the tree is colored either red or black.

• Every (NIL) leaf is black.

• The children of a red node are both black.

• Every path from a node to one of its descendant leaves
contains the same number of black nodes.

It is clear from the restrictions above that red-black trees
are nearly balanced: The maximum length of a branch from
the root to a leaf is no more than twice the minimum length
of such a path. It follows that tree operations that depend
on the height of the tree, such as lookup, are O(log n), where
n is the number of nodes in the tree.

We model red-black trees in ACL2 using Bishop Brock’s
defstructure command:

(defstructure rb key value color left right

(:options :slot-writers))

This defines the constructor function (rb key value color

left right) that creates a new node in a tree, as well as
updater functions, such as set-rb-left.

Lookup operations with red-black trees are no different
than lookup operations with ordinary binary search trees,
and they can be defined in ACL2 as follows:

(defun rb-lookup (key tree)

(cond ((not (rb-p tree))

nil)

((equal key (rb-key tree))

(rb-value tree))

((lexorder key (rb-key tree))

(rb-lookup key (rb-left tree)))

(t

(rb-lookup key (rb-right tree)))))

Notice that we use the function lexorder to compare nodes;
lexorder is a total ordering of all the objects in the ACL2
universe.

The insert operation is more complex than lookup, be-
cause it needs to preserve the key properties that make up

a red-black tree. This can be done efficiently. The key ob-
servation is that the red-black tree properties can be done
by adding a local “rotation” step after the regular binary
search tree insertion step:

(defun rb-insert-aux (key value tree)

(cond ((not (rb-p tree))

(rb key value ’red nil nil))

((equal key (rb-key tree))

(set-rb-value value tree))

((lexorder key (rb-key tree))

(rb-balance-left

(set-rb-left

(rb-insert-aux key

value

(rb-left tree))

tree)))

(t

(rb-balance-right

(set-rb-right

(rb-insert-aux key

value

(rb-right tree))

tree)))))

Note the functions rb-balance-left and rb-balance-right

called immediately after the node is inserted into the ap-
propriate tree. Replacing these functions with the identity
function results in ordinary binary tree insertion.

The rotations above are strictly local operations (although
possibly O(log n) rotations will be required for each inser-
tion.) In an imperative language, these rotations are accom-
plished by a swapping a small number of pointers. In ACL2
we can achieve the same effect with a trick of Okasaki’s [9].
The idea is to reconstruct the “top” two levels of the red-
black tree. There are four cases to consider, two each for a
left and a right rotation. The following case is representa-
tive:

(defmacro rb-rotate (a1 a2 a3 t1 t2 t3 t4)

‘(rb (rb-key ,a2) (rb-value ,a2) ’red

(rb (rb-key ,a1) (rb-value ,a1)

’black ,t1 ,t2)

(rb (rb-key ,a3) (rb-value ,a3)

’black ,t3 ,t4)))

(defun rb-balance-left-case-1 (tree)

(rb-rotate (rb-left (rb-left tree))

(rb-left tree)

tree

(rb-left (rb-left (rb-left tree)))

(rb-right (rb-left (rb-left tree)))

(rb-right (rb-left tree))

(rb-right tree)))

Note that the rotations are intended to preserve the order in
the tree, so it is assumed that the following properties hold

• k(a1) ≺ k(a2) ≺ k(a3)

• max(t1) ≺ k(a1) ≺ min(t2)

• max(t2) ≺ k(a2) ≺ min(t3)

• max(t3) ≺ k(a3) ≺ min(t4)

• ti is ordered



Here k(a) denotes the key of node a and min(t) (max(t))
denotes the minimum (maximum) key of tree t.

The remaining three cases are also based on the rb-rotate
macro. It is easy to see that this function simply rearranges
the top part of the tree while preserving the ordered nature
of the tree. It is less obvious that this sequence of rotations
does in fact result in a red-black tree.

4.2 Correctness
To prove the correctness of the algorithm requires us to

show that insertions into a red-black tree result in a search
tree that also preserves the red-black conditions as outlined
above. The search tree property can be defined as follows:

(defun ordered-tree-p (tree)

(if (rb-p tree)

(and (ordered-tree-p (rb-left tree))

(ordered-tree-p (rb-right tree))

(or (not (rb-p (rb-left tree)))

(strict-lexorder

(tree-max (rb-left tree))

(rb-key tree)))

(or (not (rb-p (rb-right tree)))

(strict-lexorder

(rb-key tree)

(tree-min (rb-right tree)))))

t))

As its name suggests, the function strict-lexorder is an
anti-reflexive version of lexorder. It is straightforward to
prove via induction that the lookup function works correctly
(e.g., as compared by a naive lookup that searches all nodes
in the tree) when a tree is ordered, as defined above.

A similar straightforward induction will show that insert-
ing a node into an ordered tree results in an ordered tree,
as long as we ignore the effect of the rotations. To include
the effect of the rotations, we proceed as follows. First, it
is easy to see that rotating a tree does not change its min-
imum or maximum element. This means that if a child of
a parent node is rotated, this does not affect the ordered
property of the parent tree—provided we can show that the
child subtree itself is ordered.

So what remains to be shown is that if a tree is ordered,
the rotation of this tree is also ordered. Recall the definition
of the macro rb-rotate:

(defmacro rb-rotate (a1 a2 a3 t1 t2 t3 t4)

‘(rb (rb-key ,a2) (rb-value ,a2) ’red

(rb (rb-key ,a1) (rb-value ,a1)

’black ,t1 ,t2)

(rb (rb-key ,a3) (rb-value ,a3)

’black ,t3 ,t4)))

Earlier we said that rb-rotate assumes that the arguments
meet the following properties:

• k(a1) ≺ k(a2) ≺ k(a3)

• max(t1) ≺ k(a1) ≺ min(t2)

• max(t2) ≺ k(a2) ≺ min(t3)

• max(t3) ≺ k(a3) ≺ min(t4)

• ti is ordered

What we did was to show formally that when these condi-
tions hold the result of rb-rotate is an ordered tree. The
reader can easily verify this claim.

Once this lemma is verified, it remains only to show (via
case analysis) that the calls to rb-rotate generated by each
of the four possible rotations satisfies the conditions above.

Similar arguments can be used to prove that the tree re-
tains the other properties of a red-black tree.

4.3 Complexity
We now use defeval$ to address the complexity of the

red-black tree operations in two steps. First, we count the
number of function openings required to insert or lookup
elements in a red-black tree in terms of the maximum height
of the tree. Later, we relate the height of the tree to the
number of elements in the tree.

One of the attractive aspects of ACL2 is that it supports
direct execution of functions defined in it. So we can ex-
ecute the cost-aware evaluator defined by defeval$ to get
an (informal) idea of the execution cost. Our approach here
was to consider red-black trees of size ranging from 10 to 500
nodes—the trees were generated by inserting the first n nat-
ural numbers into the empty tree. Then we used defeval$

to count the number of function openings required to insert
one more value into the tree. The value chosen is smaller
than all the values in the tree, so this measures the cost of
inserting the value into the leftmost branch. The results can
be seen in figure 1, which suggests that the actual execution
cost is logarithmic, as expected.

To prove that the cost of insertion is indeed logarithmic,
we examine the cost of each of the primitive functions in
turn. The constructor function rb, and the accessor and
updater functions, e.g., rb-key and set-rb-key, are partic-
ularly simple. These functions are defined as fixed combi-
nations of cons, car, and cdr, so they have a fixed com-
putation cost. For example, the cost of rb-key is equal to
3+C1, where C1 is the cost of evaluating the (first and only)
argument to rb-key.

The cost of each individual rotation, e.g., the function
rb-balance-left-case-1 is also easy to consider. Since
each rotation is implemented as a fixed computation tree,
its cost is also constant. For rb-balance-left-case-1, this
cost is equal to 136, a constant that was first discovered
using the executable version of the evaluator.

Things get murky when the rotations are combined. For
example, the following is the definition of the left rotation:

(defun rb-balance-left (tree)

(cond ((or (not (rb-p tree))

(equal (rb-color tree) ’red)

(not (rb-p (rb-left tree)))

(not (equal (rb-color (rb-left tree))

’red)))

tree)

((and (rb-p (rb-left (rb-left tree)))

(equal (rb-color (rb-left

(rb-left tree)))

’red))

(rb-balance-left-case-1 tree))

((and (rb-p (rb-right (rb-left tree)))

(equal (rb-color (rb-right

(rb-left tree)))

’red))

(rb-balance-left-case-2 tree))



Figure 1: Cost of Inserting to a Red-Black Tree

(t tree)))

The problem is that the cost of this function depends not
only on the cost of the individual rotations, but also on the
cost of deciding which rotation, if any, to apply. And the
cost of making that decision depends on the properties of
the specific tree in question. So we can only find an upper
bound for this function.

A similar situation occurs with rb-insert-aux. Our ap-
proach was to define a recurrence relation that overestimates
the cost of rb-insert-aux. To discover the right recurrence
relation, we only had to consider the cost of evaluating ex-
pressions such as the following:

(or (not (rb-p tree))

(equal (rb-color tree) ’red)

(not (rb-p (rb-left tree)))

(not (equal (rb-color (rb-left tree)) ’red)))

The only surprise was the cost of lexorder, which we ex-
pected to be close to 1 but turned out to be 54 for symbols.
To keep the numbers manageable, we decided to define our
recurrence relation in terms of the cost of evaluating these
expressions, rather than as hard bounds. The reason for this
is that it made it easier for us to remember where the val-
ues came from; i.e., the cost of lexorder is more mnemonic
than the magic constant 54.

The recurrence relation for rb-insert-aux is easily solved,
and it turns out to be linear in the number of nodes exam-
ined, which can be no more than the maximum height of
the tree. At this point, we are finished with the first part of
the analysis. We know that the time needed to perform an
insertion is linear on the height of the tree.

The second part of the analysis—a connection between the
size of the tree and its maximum height—follows from the
properties of red-black trees. In particular, since all paths

from the root to a leaf have the same number of black nodes
and there can be at most one red node between any two
black nodes in a path, it follows easily that the maximum
height of the tree is at most twice the minimum height of
the tree. Since the minimum height of the tree can be used
to find a lower bound for the number of nodes in the tree,
we have that the maximum height of the tree also binds the
number of nodes. Turning things around, if the number of
nodes is less than 2n, the tree can be of height at most 2n.

The two results can now be combined to show that in-
sert is an O(log n) operation. Similar results can also be
developed (and more easily) for lookup.

4.4 Assessment
A few problems with our defeval$ became apparent dur-

ing the formalization. The most serious one is that while
reasoning about the cost of complex functions, it is impos-
sible to stop the defined evaluator from considering the cost
of simpler functions. In particular, when reasoning about
the correctness of a complex function, it is common practice
to establish the correctness of the sub-functions on which
it depends and then to disable the definitions of these sub-
functions. The lemmas about the sub-functions can then be
used while establishing the correctness of the more complex
functions.

But we have been unable to make such a compositional
approach—disabling the constraints that define the behavior
of the evaluator—work with the cost-aware evaluator. I.e.,
we can either enable or disable the evaluator, but we can not
enable it for terms with topmost symbol rb-balance-left
and disable for terms with topmost symbol rb-left. In-
stead, we have had to rely on detailed intervention during
the proof effort. We are hopeful that this can be simplified
in the future by the strategic use of computed hints.



The other problem that we discovered is that often the
execution cost, as measured by the number of function in-
vocations, is dominated by the cost of ACL2 built-ins. For
example, endp is defined in terms of atom, which is defined
in terms of not—itself defined in terms of if—and consp.
So reasoning about the cost of functions that use endp as
part of a recursive definition (i.e., almost all functions that
operate on lists) means that we have to address this chain of
function openings. This detracts, obviously, from the impor-
tant focus, which is the cost of the function that operates on
the list. We were surprised, when reasoning about the cost
of red-black tree operations, by the high cost of the opera-
tions. Eventually, we traced some of this cost to the function
lexorder. But since the cost of the lexorder is bundled
with the cost of the red-black operations, we found it diffi-
cult to use the executable version of the evaluator to guess
the right values for the cost of intermediate expressions—
and code inspection was next to worthless. That is why we
turned to using ACL2’s proof checker, so we could manip-
ulate the terms directly and see where the cost was coming
from. We hope to simplify this in a forthcoming version
of defeval$ by letting the user specify the cost of some
functions directly, e.g., letting the user assign unit cost to
lexorder, as if it were a true built-in.

5. CURRENT STATUS AND FUTURE DI-
RECTIONS

Currently, defeval$ is defined as an ACL2 function in
the file defeval.lisp. To use it, it is only necessary to load
this file into your ACL2 session, which will define the macro
defeval$ and its supporting functions.

Our biggest challenge has been ensuring that the gener-
ated events are proved cleanly by ACL2. Particularly chal-
lenging has been the treatment of recursive functions. What
we have today works for many ACL2 terms, but we are sure
that it will fail for some functions whose recursive definition
eludes our code generation.

Our intent is to continue experimenting with defeval$,
in the expectation that it will be included in future releases
of ACL2. We believe that the events generated by defeval$

are always theorems, although we have less confidence that
they are always provable by ACL2. Moreover, the time to
prove these events can be significant. Given these facts, we
anticipate that the final version of defeval$ will simply add
the generated events into the current ACL2 theory, without
verifying them via defthm first. We are looking forward to
feedback in this issue.

We are also experimenting with some different cost func-
tions. The first involves ACL2’s special treatment of stobjs
and mbe. For stobjs, we are detecting the use of primi-
tives, such as update-field, and treating as built-ins, in-
stead of treating them as defined functions. This reflects
the facts that, while they have logical definitions, ACL2 ex-
ecutes them using Common Lisp’s destructive operations
which are O(1). A similar issue is raised by mbe. Unfortu-
nately, determining the executable version of the function
is non-trivial. We have not found a satisfactory way to re-
solve this yet, and we look forward to suggestions from the
community.

Finally, we observe that we can modify the sequence of
events generated by defeval$ to compute costs according to
different criteria. Note in particular that the cost function

plays absolutely no role in the development of the functions
evl-f-n and evl-n. Therefore, once we decide on a suitable
cost function, the same lemmas and theorems necessary to
show termination of evl-step will go through.

This allows us to consider some interesting possibilities.
We can leave it up to the user to specify a cost function that
determines the cost of a particular function invocation. This
allows the user to override the cost of built-in functions, for
example. This can be used to measure different aspects of
function invocation. One cost function can be used to count
the number of cons evaluations, giving an idea of the space
complexity of a given execution. Another alternative is to
consider only the maximum cost of argument evaluation, not
their sum. This corresponds to an (ideal) parallel execution.
We are currently exploring this possibility in the context of
powerlists.

6. REFERENCES
[1] R. S. Boyer and J S. Moore. The addition of bounded

quantification and partial functions to a
computational logic and its theorem prover. Journal of
Automated Reasoning, 4, 1988.

[2] R. S. Boyer and J S. Moore. A Computational Logic
Handbook. Academic Press, San Diego, 1988.

[3] T. H. Corman, C. E. Leiserson, and R. L. Rivest.
Introduction to Algorithms, chapter 32. McGraw-Hill,
New York, 1990.

[4] R. Gamboa and J. Cowles. Theory extension in
ACL2(r), 2006 (under review).

[5] D. Greve and M. Wilding. Using MBE to speed a
verified graph pathfinder. In Proceedings of the Fourth
International Workshop on the ACL2 Theorem Prover
and its Applications (ACL2-2003), 2003.

[6] M. Kaufmann and J S. Moore. Structured theory
development for a mechanized logic. Journal of
Automated Reasoning, 26(2):161–203, 2001.

[7] K. Kunen. Nonconstructive computational
mathematics. Journal of Automated Reasoning, 21,
1998.

[8] J S. Moore. An exercise in graph theory. In
M. Kaufmann, P. Manolios, and J S. Moore, editors,
Computer-Aided Reasoning: ACL2 Case Studies,
chapter 5. Kluwer Academic Press, 2000.

[9] C. Okasaki. Purely Functional Data Structures.
Cambridge University Press, 1998.

[10] J. L. R. Reina, J. A. Alonso, M. J. Hidalgo, and
F. Mart́ın. A formally verified quadratic unification
algorithm. In Proceedings of the Fifth International
Workshop on the ACL2 Theorem Prover and Its
Applications (ACL2-2004), 2004.

[11] M. Wilding. Single-threaded processor models:
Enabling proof and high-speed execution. In
M. Kaufmann, P. Manolios, and J S. Moore, editors,
Computer-Aided Reasoning: ACL2 Case Studies,
chapter 8. Kluwer Academic Press, 2000.

[12] M. Wilding. Using a single-threaded object to speed a
verified graph pathfinder. In Proceedings of the Second
International Workshop on the ACL2 Theorem Prover
and its Applications (ACL2-2000), 2000.


